随着人工智能技术的飞速发展,AI大模型已经成为当下最热门的技术领域之一。对于初学者来说,了解AI大模型的分类、代表模型和应用是非常重要的第一步。本文将用通俗易懂的语言,带你快速入门AI大模型。
一、什么是AI大模型?
AI大模型是指具有大量参数和复杂结构的机器学习模型,通常包含数十亿甚至数万亿个参数。这些模型通过学习海量数据来提高预测能力,从而在自然语言处理、计算机视觉、语音识别等领域取得重要突破。
二、AI大模型的分类
- 按参数规模分类
-
小型模型:参数量≤1百万个。
-
中型模型:参数量在1百万到1亿之间。
-
大型模型:参数量在1亿到10亿之间。
-
极大型模型:参数量≥10亿。
- 按功能领域分类
-
自然语言处理(NLP)模型:用于处理和生成自然语言文本,如GPT系列、BERT等。它们可以完成文本生成、机器翻译、问答系统等任务。
-
计算机视觉(CV)模型:专注于图像和视频的处理,如ResNet、YOLO等。它们可以用于图像分类、目标检测等任务。
-
多模态模型:能够同时处理多种类型的数据(如文本、图像、语音等),实现更丰富的应用场景。
- 按架构分类
-
基于Transformer架构的模型:如GPT、BERT、T5等。Transformer架构通过自注意力机制,能够高效处理序列数据。
-
基于CNN架构的模型:如ResNet、EfficientNet等,主要用于计算机视觉任务。
-
生成对抗网络(GAN):通过生成器和判别器的对抗训练,生成逼真的图像。
三、市面上的代表AI大模型
- 自然语言处理(NLP)模型
-
GPT系列:由OpenAI开发,是目前最知名的自然语言处理模型之一。GPT-4能够生成高质量的文本,广泛应用于写作、翻译、问答等多个领域。
-
BERT:由Google开发,主要用于理解自然语言,广泛应用于搜索引擎、智能客服等领域。
-
文心一言:百度开发的中文语言模型,专为中文语言处理优化,广泛应用于智能搜索、内容创作等。
- 计算机视觉(CV)模型
-
ResNet:由微软研究院开发,是深度学习在计算机视觉领域的经典模型,广泛应用于图像分类、目标检测等任务。
-
YOLO:一种实时目标检测系统,能够快速准确地识别图像中的物体,广泛应用于安防监控、自动驾驶等领域。
- 多模态模型
-
CLIP:由OpenAI开发,能够将图像和文本结合起来进行理解和生成,广泛应用于图像搜索、智能创作等领域。
-
Flamingo:由DeepMind开发,能够处理多种模态的数据,如文本、图像和语音,广泛应用于智能助手、虚拟现实等领域。
- 行业专用模型
-
BloombergGPT:由彭博社开发的金融领域大模型,专注于金融数据的处理和分析,广泛应用于金融风险评估、投资决策等领域。
-
Med-PaLM:由谷歌开发的医疗领域大模型,能够理解和生成医疗相关的文本和图像,广泛应用于医疗诊断、病历管理等领域。
-
盘古气象大模型:由华为云开发的气象领域大模型,能够快速准确地预测气象变化,广泛应用于气象预报、灾害预警等领域。
四、AI大模型的应用领域
- 自然语言处理(NLP)
-
文本生成:如GPT系列模型,可以生成高质量的文章、故事、新闻等。
-
机器翻译:如Google的Transformer模型,支持多种语言之间的高质量翻译。
-
问答系统:如BERT和T5,能够理解和回答用户提出的问题,应用于智能客服、虚拟助手等。
- 计算机视觉(CV)
-
图像分类:如ResNet、EfficientNet等模型,能够对图像进行分类,应用于医疗影像分析、安防监控等。
-
目标检测:如YOLO、Faster R-CNN等模型,能够识别图像中的特定对象,应用于自动驾驶、智能零售等。
-
图像生成:如GAN,能够生成逼真的图像,应用于艺术创作、图像超分辨率等。
- 多模态应用
-
虚拟试衣:利用多模态模型,结合图像和文本信息,实现虚拟试衣功能。
-
智能问答系统:结合文本和知识库,提供更精准的问答服务。
五、AI大模型的学习建议
对于零基础小白来说,快速入门AI大模型是完全可行的。以下是一些建议:
-
学习基础知识:了解机器学习和深度学习的基本概念,熟悉Python编程。
-
选择合适的学习资源:可以参考一些系统的学习路线,例如AI大模型应用解析中提到的50+案例,这些资源可以帮助小白更好地理解模型的实际应。
-
动手实践:通过实战案例,如构建问答系统、虚拟试衣系统等,加深对模型的理解。
AI大模型虽然复杂,但只要掌握正确的方法,小白也能快速入门并掌握其核心内容。希望本文能帮助你更好地了解AI大模型,开启你的AI学习之旅!
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓