AI Agent篇——小白的入门指南(附教程)

近段时间,AI智能体(AI Agent发展迅猛,有不少人疑惑,在大模型已然强大的当下,为何还需要 AI Agent 呢?

本文就用简单的语言带大家快速认识AI Agent ,了解大模型与智能体的区别,并从0到1搭建一个你自己的Agent。 

一、大模型和智能体有啥区别?

图片

简单来说,大模型好比 “超级大脑”,知识渊博、能力出众,能回答问题、生成文章,但是它不能帮我们完成更复杂的任务。

比如我想去青海玩,大模型可以帮我生成行程规划和旅游攻略,但是没法帮我订机票、订酒店。 

 AI Agent 就像是一位 “办事能力强的大管家”,它不仅能借助大模型理解我的问题,还能主动规划任务、做出决策并执行、同时会使用工具,还能记住我的兴趣偏好和过去说过的话,简直太贴心。

总的来说,Agent与大模型之间的区别可以归纳为:

  • 大模型只是一个大脑,而Agent是一个完整体

  • 大模型只会告诉你怎么做,而Agent会帮你做

  • 模型本身不会使用工具,而Agent会使用工具

  • 大模型通常不会记忆,而Agent具备记忆能力

二、Agent系统的核心组成

图片

Agent系统的核心组成可以总结成:

Agent = 大模型(LLM) +  规划 + 工具 + 记忆 + 行动

1. 大模型(LLM):提供核心的语言理解、推理与生成能力,是整个Agent的“大脑”。

2. 规划(Planning):对复杂任务借助大模型进行分解、规划和调度,并及时观察子任务执行的结果与反馈,对任务及时调整。

3. 工具(Tools):与外部工具(如API、数据库、硬件设备)进行交互,扩展智能体的能力,执行任务,相当于Agent的“手脚”。

4. 记忆(Memory):存储短期记忆(如一次任务过程中的多次交互)或长期记忆(如用户的任务历史、个人信息、兴趣便好等),优化后续的思考和行动。

5. 行动(Action):Agent将规划与记忆转化为具体输出的过程,包括与外部环境的互动或工具调用。

三、从0到1搭建智能体

本文以coze为例,手把手教大家搭建自己的智能体。

Coze是新一代 AI 应用开发平台,定位是零代码或低代码的AI开发平台,不需要编程基础,就能快速搭建出基于大模型的各类 AI应用,也可以通过 API 或 SDK 将 AI 应用集成到你的业务系统中。

国内版网址:www.coze.cn
国外版网址:www.coze.com(需科学上网)

首先我们进入官网,使用手机号或抖音注册/登录。

登录完成后,进入工作空间,选择项目开发,点击“创建”,选择创建智能体。

图片

有两种创建模式,一种是「标准创建」,另一种是「AI创建」 

我们先看看「标准创建」,标准创建界面只需要输入智能体名称、智能体功能介绍,并设置图标即可。

给智能体起一个独一无二的名字,比如天气助手,然后点击图标,上传一张图片作为智能体的logo,或者直接让 AI 自动生成图标。

图片

接下来便进入了智能体的编排界面。

图片

人设与回复逻辑设置提示词,支持 Jinja 和 Markdown 语法,同时下方也提供了一些提示词模板,帮助我们更高效地编写提示词。在这里,我们给智能体说明它要扮演什么角色,或者要完成什么任务。

插件添加后智能体能够调用外部 API ,比如搜索信息,浏览网页。

工作流通过可视化的方式,对插件、大语言模型、代码块等功能进行组合,实现复杂、稳定的业务流程编排。

触发器建立一些定时任务,比如现在社群中的每日 AI 资讯。

知识可以理解为知识库。因为我们使用的大模型虽然清楚常识性问题,但不够细致具体,比如公司的规章制度,模型无法主动获取,这时就要用到知识库。


智能体搭建

比如,先给智能体简单设置一个人设和技能。

# 角色:
你是一个记者,擅长提炼新闻要点,并做出精炼的总结。

# 技能:
1. 根据用户的输入,查找新闻
2. 提炼新闻内容,做出精炼的总结

然后在右侧区域进行提问调试。

 

图片

 

如果不知道提示词要怎么写,可以用「人设与回复逻辑」区域的优化功能 。

 

图片

 

选择自动优化,就会根据我们写的简易提示词进行优化,如下图⬇️ 

 

图片

 

也可以根据调试结果去进行调优 

 

图片

 

搞定这一步,恭喜你,首个简易智能体就问世啦!

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值