先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Linux运维全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上运维知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024b (备注运维)
正文
- 理论与实践的鸿沟:尽管机器学习有着坚实的理论基础,但在实际的大模型训练中,理论往往无法完全指导实践。如同炼丹术士缺乏对化学和物理的深刻理解,数据科学家和工程师也常常在理论和实践之间摸索。
- 高成本与资源消耗:炼丹术常需要珍贵材料和长时间的烹炖。相似地,大模型的训练需要大量的计算资源和时间,消耗巨大的能源,并需要昂贵的硬件支持。
- 经验与直觉的重要性:炼丹术士依赖经验和直觉,而大模型的训练也常常依赖研究人员的直觉和经验判断,特别是在模型设计和调参时。
理论与实践:大模型训练的科学基础
虽然大模型训练被比作炼丹,但这并不意味着它完全缺乏理论基础。事实上,机器学习和深度学习有着坚实的数学和统计学基础。从概率论到优化理论,再到信息论,这些学科提供了理解和设计算法的框架。问题在于,当模型规模变得极其庞大时,理论往往难以精确预测实际结果,使得直觉和经验成为不可或缺的部分。
大模型训练的未来:超越“炼丹”
尽管当前大模型训练存在许多类似于炼丹术的特点,但科技界正致力于将其推向更加科学和系统化的方向。以下是可能的几个发展方向:
- 更强的理论指导:加深对大模型行为的理论理解,减少盲目尝试,提高效率。
- 自动化和系统化:发展更先进的自动化工具和系统,减少人为的直觉判断,使训练过程更加可控和可预测。
- 资源优化:开发更高效的算法和硬件,减少能源和计算资源的消耗,使大模型训练更加环保和经济。
- 伦理和可解释性:加强对模型的伦理审视和可解释性研究,确保技术的负责任使用。
结语
将大模型训练比作炼丹术,在某种程度上揭示了其复杂和不可预测的本质。然而,随着理论的深化和技术的发展,我们有理由相信,这一领域会越来越偏向于科学而非神秘。未来,通过系统化、自动化和伦理化的努力,大模型训练有望变得更加高效、可控和透明,最终实现其在多个领域的革命性应用。
最后的话
最近很多小伙伴找我要Linux学习资料,于是我翻箱倒柜,整理了一些优质资源,涵盖视频、电子书、PPT等共享给大家!
资料预览
给大家整理的视频资料:
给大家整理的电子书资料:
如果本文对你有帮助,欢迎点赞、收藏、转发给朋友,让我有持续创作的动力!
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注运维)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**