随着人工智能技术的广泛应用,AI安全面临新的挑战。为帮助企业应对这些挑战,火山引擎推出了全新的大模型应用防火墙,提供全方位的安全防护能力,从“被动防御”升级到“主动对抗”,有效降低由模型攻击、推理服务滥用和系统权限突破带来的风险,为企业构建一个安全可信的AI推理环境。
大模型应用防火墙具备卓越的安全防护效能。它能够有效抵御算力DDoS攻击,消除发生率约30%的恶意tokens消耗风险;通过防范提示词注入攻击,使敏感数据泄露事件发生率降低70%;降低模型滥用、幻觉、回复不准确的发生率90%以上;严格满足输入输出合规要求,将不良信息输出率控制在5%以内。
火山引擎依据丰富的攻防实践,构建了涵盖用户接入层、智能体层、服务/业务层、模型推理层、模型训练层的五层威胁模型。
案例一:提示词拼接注入攻击
针对提示词拼接注入攻击,火山引擎采用意图识别、防提示词注入、动态对抗和价值观校准等多重防护机制:
-
通过深度上下文引擎识别97%的隐式攻击。
-
基于千万级对抗样本训练,覆盖20+提示词攻击场景,检出率达99%以上。
-
实测违规内容及价值观偏移回答下降98%,轻量化架构可在100ms内完成风险拦截,误判率较行业低一半。
案例二:聊天数据窃取攻击
为了防止聊天数据被窃取,火山引擎采用了RAG数据加密/替换、模型计算环境安全性提升和访问识别等多种方法:
-
使用“深度学习小模型+大模型”的技术方案,对敏感数据进行脱敏处理,降低96%的泄露风险。
-
提供精调的提示词注入防护模型,支持多种攻击防护,并结合私密云计算方案确保核心数据即使被窃取也无法解密,使注入攻击拦截率达到99%。
案例三:系统权限攻击
面对SQL注入、RCE提权等专业化攻击,火山引擎的大模型应用防火墙不仅能识别固定规则的攻击代码,还能应对诱导生成的攻击代码:
-
在对话链路中实时拦截包含攻击行为的请求,源头切断威胁。
-
检测外部返回数据中的间接注入攻击,规避潜在威胁。
-
在应用发布时检测并拒绝包含恶意内容的应用。
案例四:可用性攻击
针对新型算力DDoS攻击和推理服务盗用问题,火山引擎构建了智能体算力防护体系:
-
识别90%的自动化“薅羊毛”行为。
-
动态资源熔断机制减少无效资源调用80%,帮助某头部厂商避免40%以上的算力损失。
火山引擎将继续致力于开发全面智能化防御策略与服务,帮助企业实现更加稳健的数字化转型,开辟一个安全可信的AI推理空间。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓