豆瓣评分超9.0_大模型书籍推荐知乎,大模型入门必读的9本硬核好书,值得反复研读!

模型大师们,准备好踏上一段深度学习与模型构建的路了吗?

这里有八本经典之作,它们将是你攀登知识高峰的阶梯
在这里插入图片描述

从《PyTorch深度学习实战》到《大模型时代》
从掌握基础框架到洞悉大模型时代的变革

模型大师,准备好了吗?翻烂这八本书,直接嘎嘎冲!

第一本:

《从零开始大模型开发与微调》
在这里插入图片描述

《从零开始大模型开发与微调》是一本由王晓华所著,清华大学出版社出版的书籍。本书系统介绍了基于PyTorch 2.0和ChatGLM的大模型开发与微调技术。内容涵盖大模型的基本理论、算法、程序实现、应用实战及微调技术,旨在为读者揭示大模型开发的全貌。 书中通过丰富的示例和实战案例,展示了如何构建、训练、评估及微调大模型,适合PyTorch深度学习初学者、大型开发初学者及开发人员学习。

第二本:

《大规模语言模型》
在这里插入图片描述

《大规模语言模型》是一本由张奇教授等撰写的专业书籍。该书首先介绍了LLM的基本概念发展历程以及构建流程,涵盖了从预训练、有监督微调、奖励建模到强化学习的四个阶段。书中详细讨论了每个阶段所使用的算法、数据来源面临的难题及实践经验,并提供了大量的工程实践方法和示例代码。 该书不仅适合自然语言处理和深度学习领域的研究者和工程师,也适合对大规模语言模型感兴趣的读者作为入门指南。

这八本大模型书籍已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

在这里插入图片描述

第三本:

《大规模应用开发极简入门》
在这里插入图片描述
《大规模应用开发极简入门》是一本专注于大规模应用开发的入门指南。详细讲解了如何将这类模型集成到基于Python的自然语言处理应用程序中。书中不仅涵盖了文本生成、内容摘要等初级应用程序的开发,还深入探讨了提示工程模型微调等进阶主题。 通过丰富的案例和实战演练,本书旨在帮助读者快速上手大规模应用开发,为进入大模型时代提供有力的技术支持。

第四本:

《一本书读懂AIGC》
在这里插入图片描述

《一本书读懂AIGC》是一本由a15a等人撰写的科普书籍,由电子工业出版社出版。本书系统介绍了AIGC(人工智能生成内容)的基础知识、技术原理和应用实践,涵盖了AIGC在文本、声音图片、视频等领域的发展和应用。 通过大量案例和实例,该书详细阐述了AIGC的应用场景和价值,并探讨了AIGC对人类文明发展产生的深远影响。全书共252页,以通俗易懂的方式为读者揭示了AIGC的奥秘,是了解AIGC的入门佳作。

第五本:

《GPT图解》
在这里插入图片描述
《G_T图解》该书深入浅出地介绍了G_T模型的发展历程、核心原理及应用前景。全书分为多个章节,涵盖了从N-Gram、词袋模型到Word2Vec、神经概率语言模型等自然语言处理技术的演进,并详细介绍了循环神经网络(RNN)、Seq2Seq、注意力机制和Transformer等关键技术。 全书内容丰富,图文并茂,旨在为读者提供一份全面而深入的G*T技术指南。

第六本:

《Langchain入门指南》
在这里插入图片描述
《LangChain入门指南》全书内容清晰,分为多个部分进行详细介绍。书籍概述了LLM技术的发展背景以及LangChain框架的设计理念,为读者提供了必要的前置知识。随后,书籍深入介绍了LangChain的六大模块,包括模型I/0、数据增强、链、记忆等,并通过大量代码示例让读者了解每个模块的原理和用法。

第七本:

《pytorch深度学习实战》
在这里插入图片描述
《PyTorch深度学习实战》介绍了PyTorch的核心概念和特性,如动态图、自动微分等,让读者快速掌握PyTorch的基础知识。接着,书籍详细讲解了深度学习的关键实践,包括使用PyTorch张量AP1、Python加载数据、监控训练以及结果可视化等,帮助读者深入理解深度学习的整个流程。 书中还包含了真实、完整的案例项目,如肿瘤图像分类器的构建,旨在通过实践提升读者的动手能力。

第八本:

《大模型时代》
在这里插入图片描述
《大模型时代》深入探讨了大模型时代的技术、应用和产业变化。作者通过拟人化的形式生动解释了ChatG*T大模型背后的原理,并对其基础能力进行深度剖析。书籍参照三次工业革命的历史和逻辑,描绘了大模型如何驱动社会进入智能革命和脑机协作时代,并为个人和企业应对变革提出建议。 书中还介绍了大模型在多个领域的应用并对国内外大模型产业的构成和发展进行了分析。

这八本大模型书籍已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 乎反爬虫机制及其解决方案 乎作为国内名的识分享平台,为了保护自身的数据安全以及用户体验,实施了一系列反爬虫措施。这些措施主要包括但不限于动态参数加密、IP访问频率限制、验证码校验等。 #### 动态参数加密解析 乎的API请求中通常会携带一些特殊的加密参数,例如`x_zse_96`和`x_zst_81`[^2]。其中,`x_zse_96`是一个经过MD5加密后的字符串,其生成逻辑可以通过逆向工程找到对应的JS函数实现。具体来说: - `x_zse_96` 的值是由 `(0,P(r).encrypt)(f()(s))` 方法生成的,这里的 `s` 是一个基础加密串,通过 MD5 加密得到最终的结果[^4]。 对于 `__zse_ck` 参数,则是存储在 Cookie 中的一个重要标志位,主要用于识别用户的合法性。它的生成方式较为复杂,涉及多个内部变量的组合与加密操作[^5]。 #### IP 访问频率控制规避策略 除了参数层面的防护外,乎还会针对频繁发起请求的 IP 地址采取限流手段。如果某个 IP 单位时间内发送过多请求,可能会触发临时封禁或者强制弹出验证码验证身份。因此,在编写爬虫程序时需要注意合理设置延时间隔来模拟人类行为模式,从而降低被检测到的风险概率。 以下是基于 Python 实现的一个简单的乎爬取示例代码片段: ```python import time import requests from hashlib import md5 def generate_x_zse_96(): s = 'your_base_encryption_string' # 替换为你实际获取的基础加密串 return md5(s.encode()).hexdigest() headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)', 'Cookie': '__zse_ck=' + generate_x_zse_96(), } url = "https://www.zhihu.com/api/v4/questions/{question_id}/answers" params = {'include': 'data[*].is_normal', 'limit': 5, 'offset': 0} response = requests.get(url.format(question_id="example_question"), headers=headers, params=params) if response.status_code == 200: data = response.json() else: print(f"Failed to fetch data: {response.text}") time.sleep(random.uniform(1, 3)) # 随机休眠防止过高频率请求 ``` 上述代码展示了如何自定义生成合法有效的 `x_zse_96` 值并将其嵌入 HTTP 请求头中的 Cookies 字段里去完成一次基本的数据抓取动作[^3]。 #### 总结 面对日益复杂的网络环境和技术壁垒,开发者应当遵循各服务平台制定的相关规定,在尊重他人劳动成果的前提下开展技术研究活动。同时也要意识到过度依赖自动化工具可能带来负面效应,比如增加服务器负载压力等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值