AI教育辅助:教学设计、教案生成、教研活动设计、课件PPT、备课助手、智能互动课堂等六大应用场景演示
随着人工智能(AI)技术的快速发展,AI在教育领域的应用日益广泛。AI教育辅助工具在教学设计、教案生成、教研活动设计、备课助手、课件PPT制作、智能互动课堂等方面发挥着重要作用。本文将深入探讨这六大应用场景,并演示AI教育辅助工具的实际应用。
一、教学设计
AI教育辅助工具可以根据学生的学习需求、兴趣爱好和能力水平,为教师提供个性化的教学设计建议。通过分析学生的学习数据,AI可以为教师推荐合适的教学内容、教学方法和评价方式,从而提高教学效果。
例如: 为《旅游目的地管理》课程做教学设计,如下图:
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额
二、教案生成
AI教育辅助工具可以根据教师的教学目标和课程内容,自动生成教案。这些教案不仅包含详细的教学步骤和方法,还提供了丰富的教学资源和案例。教师可以根据自己的需求对生成的教案进行修改和完善,从而提高备课效率。
例如: 为《旅游目的地管理》课程的“第二章:旅游目的地利益相关者”做一份详细的教案
附教案全文如下:
**《旅游目的地管理》教案** **第二章:旅游目的地利益相关者** **教学目标** 1. 让学生了解旅游目的地利益相关者的定义和类型。 2. 帮助学生理解各利益相关者在旅游目的地管理中的角色和影响。 3. 培养学生分析旅游目的地利益相关者之间互动关系的能力。 4. 引导学生探讨如何在旅游目的地管理中平衡各利益相关者的利益。 **教学重难点** - 重点:各利益相关者的角色与影响,利益相关者之间的互动关系。 - 难点:如何在实践中平衡各利益相关者的利益。 **教学方法** - 讲授法:介绍利益相关者概念和分类。 - 案例分析法:分析具体旅游目的地的利益相关者互动案例。 - 小组讨论法:分组讨论利益相关者管理策略。 - 角色扮演法:模拟利益相关者之间的协商过程。 **教学准备** - 准备相关案例资料。 - 准备小组讨论指导问题。 - 准备角色扮演的情景模拟材料。 **教学过程** 一、导入(5分钟) - 提出问题:“在旅游目的地的发展过程中,有哪些人会受到影响?他们是如何影响旅游目的地的发展的?” - 引导学生思考并分享想法。 二、讲授新课(15分钟) 1. 定义利益相关者概念,并介绍旅游目的地利益相关者的类型和特点。 2. 讲解各利益相关者在旅游目的地管理中的角色和影响。 3. 强调利益相关者之间的互动关系及其对旅游目的地管理的重要性。 三、案例分析(15分钟) - 展示一个具体的旅游目的地管理案例,涉及多个利益相关者的互动。 - 引导学生分析案例中各利益相关者的行为及其背后的动机。 - 讨论案例中利益相关者管理的问题与挑战。 四、小组讨论(15分钟) - 将学生分成若干小组,每组讨论一个特定的旅游目的地利益相关者问题。 - 提供小组讨论指导问题,如:“如何平衡当地居民与旅游开发商的利益?”、“如何提高游客满意度同时保护自然环境?”等。 - 小组讨论后,每组选出代表汇报讨论成果。 五、角色扮演(15分钟) - 设置一个模拟场景,让学生扮演不同的利益相关者进行协商。 - 观察学生在模拟中的表现,引导他们理解利益相关者之间的沟通与协调。 - 讨论角色扮演过程中的成功与不足,以及改进策略。 六、总结提升(5分钟) - 总结本节课的主要内容和关键点。 - 强调利益相关者管理在旅游目的地管理中的重要性。 - 布置课后作业:要求学生选择一个旅游目的地,分析其利益相关者关系,并提出管理建议。 **板书设计** **旅游目的地利益相关者** 1. 定义与分类 2. 角色与影响 3. 利益相关者互动 **课后反思** - 学生对利益相关者概念的理解程度如何? - 学生在案例分析和小组讨论中的表现如何? - 角色扮演活动是否有效地帮助学生理解利益相关者之间的沟通与协调? - 课后作业是否能帮助学生将理论知识应用于实践中? |
三、教研活动设计
AI教育辅助工具可以协助教师设计教研活动,促进教师之间的交流与合作。通过收集和分析教师的教学数据,AI可以为教师推荐合适的教研主题、活动形式和内容,从而激发教师的教研热情,提高教学质量。
四、备课助手
AI教育辅助工具可以为教师提供备课助手功能,帮助教师快速查找和整理教学资源。教师可以通过输入关键词或选择相关主题,快速获取相关的教学资料、案例和练习题。此外,AI教育辅助工具还可以为教师提供智能提醒功能,如备课进度提醒、学生作业完成情况提醒等,从而帮助教师更好地管理教学工作。
五、课件PPT制作
AI教育辅助工具可以为教师提供课件PPT制作功能,帮助教师快速生成高质量的课件。教师可以通过选择主题、添加内容和调整布局等方式,轻松制作出自己的课件。此外,AI教育辅助工具还可以为教师提供丰富的素材库和模板库,从而满足教师不同的制作需求。
例如: 为《旅游目的地管理》课程的“第二章:旅游目的地利益相关者”做一份详细的PPT课件大纲
六、智能互动课堂
AI教育辅助工具可以与智能互动课堂相结合,为学生提供更加丰富多彩的学习体验。通过智能互动课堂,学生可以随时提问、参与讨论和展示作品,而教师则可以根据学生的反馈和表现及时调整教学策略。同时,AI教育辅助工具还可以为学生提供个性化的学习建议和资源推荐,帮助学生更好地掌握知识和提高学习效果。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。