380篇文献!首份Agentic大模型最新技术综述

Agentic LLMs是指那些能够作为智能Agent行动的大语言模型,它们具备推理、行动和交互的能力,基于此对相关技术进行综述,并提出了一个研究议程,指导未来研究方向。

Agentic大语言模型(LLM)分类体系的三个类别——推理、行动和交互(以红色表示)之间的良性循环。影响某一类别的概念以绿色表示。图中还标示了反馈循环,即推理、行动和交互产生新的数据,用于预训练和微调LLMs。

一、推理(Reasoning)

详细讨论了代理型大语言模型(Agentic LLMs)在推理能力方面的研究进展和技术方法。推理能力是代理型LLMs的核心组成部分之一,它使模型能够进行逻辑思考、问题解决和决策制定:

1. 多步推理方法

多步推理方法是提升LLMs推理能力的重要技术。这些方法通过将复杂问题分解为多个中间步骤来逐步解决问题,从而提高模型的准确性和可靠性。主要方法包括:

  • 链式思考(Chain of Thought):通过逐步解决问题的中间步骤,显著提高了模型在数学问题上的准确率。例如,通过提示模型先重述问题中的信息,再逐步解答,可以显著提高其在数学问题上的表现。

  • 自我一致性(Self Consistency):通过生成多个可能的推理路径,并通过多数投票选择最一致的答案,进一步提高了模型的性能。

  • 搜索树(Tree of Thoughts):通过创建一个外部控制算法,调用模型以探索所有可能的推理步骤,从而系统地探索问题的解空间。

2. 自我反思

自我反思是推理能力的另一个重要方面,它允许模型评估和改进自己的结果。主要方法包括:

  • 提示改进(Prompt-Improvement):通过外部算法使用LLM评估其自身的预测,并创建新的提示以改进其结果。例如,Progressive Hint Prompting(PHP)通过逐步提供提示来改进模型的输出。

  • LLMs用于自我反思:通过让LLM评估其自身的输出,并通过反馈和改进来提高结果的质量。例如,Self Refine方法通过迭代反馈和改进来优化模型的输出。

3. 检索增强

检索增强方法通过在推理时检索额外的信息来解决LLMs缺乏及时信息的问题。这些方法包括:

  • 自适应检索(Adaptive Retrieval):LLMs可以根据需要决定何时检索信息,从而提高其在特定任务中的表现。

  • 检索增强生成(Retrieval Augmentation):通过将预训练的LLMs与外部知识库结合,使其能够访问最新的信息,从而提高其在问答等任务中的表现。

二、行动(Acting)

详细探讨了代理型大语言模型(Agentic LLMs)在执行具体行动方面的能力和研究进展。这一节的核心内容集中在如何使LLMs能够通过工具、机器人和多模态交互来实现具体的行动任务:

1. 行动模型

行动模型是使LLMs能够理解和执行具体任务的基础。讨论了如何通过世界模型(World Models)和多模态视觉-语言-行动模型(Vision-Language-Action Models, VLA)来增强LLMs的行动能力。

  • 世界模型(World Models):世界模型是代理型LLMs在复杂环境中学习和行动的基础。这些模型通过与环境的交互来学习最优策略,例如在机器人运动、视频游戏和开放世界游戏中的应用。例如,WorldCoder通过编写Python程序来构建世界模型,解释其与环境的交互。

  • 多模态视觉-语言-行动模型(VLA Models):这些模型结合了视觉信息和语言指令,使机器人能够执行复杂的任务。例如,CLIPort通过视觉导航模型和语言指令来指导机器人完成任务,而RT-2模型则通过将网络知识转移到机器人控制中,实现了零样本泛化。

2. 机器人和工具

讨论了如何使LLMs能够通过机器人和工具来执行具体任务,从而提高其实用性。

  • 机器人规划(Robot Planning):通过将语言模型与机器人的物理能力相结合,使机器人能够理解并执行语言指令。例如,Say Can通过结合语言模型和机器人动作的价值函数,确保机器人执行的行动是安全且可行的。

  • 行动工具(Action Tools):LLMs可以通过调用外部工具(如API)来执行任务。例如,Toolformer通过训练LLM决定何时调用API、传递什么参数以及如何整合结果,从而扩展了LLM的功能。

  • 计算机和浏览器工具(Computer and Browser Tools):使LLMs能够直接与计算机环境交互,例如通过浏览器或操作系统界面执行任务。例如,OmniParser V2通过视觉解析屏幕元素,使LLMs能够与图形用户界面(GUI)进行交互。

  • 对抗性提示生成(Adversarial Prompt Generation):通过生成多样化的对抗性提示,提高LLMs在复杂环境中的鲁棒性。例如,Rainbow Teaming使用进化算法生成多样化的对抗性提示。

3. 助手

讨论了如何将LLMs应用于各种助手场景,从而提高其在实际应用中的价值。

  • 对话助手(Conversational Assistants):通过自然语言交互,LLMs可以提供多种服务,例如教育、会议支持和任务调度。例如,AssistantGPT结合了LLM、工具调用和记忆,支持多种操作。

  • 医疗助手(Medical Assistants):LLMs在医疗领域表现出色,能够生成医疗报告、提供诊断建议,并在医学教育中发挥作用。例如,MedCo通过多智能体框架生成患者友好的医疗报告。

  • 交易助手(Trading Assistants):LLMs可以作为金融交易助手,提供市场分析和交易建议。例如,FinAgent是一个多模态的交易助手,能够从多种数据源中提取信息并进行技术分析。

  • 科学助手(Science Assistants):LLMs可以自动化科学研究流程,从实验设计到论文撰写。例如,AI Scientist框架能够自动化从想法生成到论文撰写的整个过程。

    三、交互(Interacting)

    详细探讨了代理型大语言模型(Agentic LLMs)在交互能力方面的研究进展和技术方法:如何使LLMs能够与其他智能体(包括人类和其他LLMs)进行有效交互,从而实现更复杂的社会行为和协作任务。

    1. LLMs的社会能力

    讨论了传统LLMs在社会和交互能力方面的基础,包括对话、战略行为和心理理论(Theory of Mind)。

    • 对话(Conversation):LLMs在自然语言交互方面取得了显著进展,能够生成语法正确且功能上符合上下文的句子。然而,LLMs在不同领域的表现仍存在差异,且整体性能低于人类水平。通过多轮对话和上下文理解,LLMs的对话能力得到了提升。

    • 战略行为(Strategic Behavior):LLMs在经济博弈中的表现因游戏类型而异。例如,在囚徒困境等重复博弈中,LLMs表现出较高的合作性,但在需要协调的博弈中表现较差。研究表明,LLMs在博弈中的行为可以通过额外的提示信息进行调整。

    • 心理理论(Theory of Mind):LLMs在心理理论任务中的表现逐渐接近人类水平,能够理解他人的心理状态并据此进行推理。然而,LLMs在复杂情境下的心理理论能力仍需进一步研究。

    2. 基于角色的交互

    讨论了LLMs在多智能体环境中通过角色扮演进行交互的能力,包括战略行为、团队合作和任务解决。

    • 多LLM环境中的战略行为(Strategic Behavior in Multi-LLM Environments):通过多智能体博弈和角色扮演,LLMs能够展示出复杂的战略行为。例如,在社会推理游戏中,LLMs能够通过角色扮演和交互来提高其战略推理能力。

    • 基于角色的任务解决和团队合作(Role-Based Task Solving and Team Work):LLMs可以通过角色扮演和团队合作来解决复杂任务。例如,CAMEL框架通过让两个LLMs扮演不同角色(如编码者和审稿人)来合作完成任务。

    3. 模拟开放社会

    讨论了LLMs在开放社会中的交互能力,包括社会规范的形成、社会动态和集体行为。

    • 社会规范的形成(Emergent Social Norms):LLMs能够通过自然语言交互形成和遵守社会规范。例如,通过多智能体模拟,LLMs能够自发地形成和遵守复杂的社交规范。

    • 开放世界代理(Open-World Agents):LLMs可以通过多智能体交互生成新的数据,从而实现自我学习和持续改进。例如,WebArena通过模拟真实世界的网络环境,使LLMs能够进行开放式的交互和学习。

       

       一、大模型风口已至:月薪30K+的AI岗正在批量诞生

      2025年大模型应用呈现爆发式增长,根据工信部最新数据:

      国内大模型相关岗位缺口达47万

      初级工程师平均薪资28K(数据来源:BOSS直聘报告)

      70%企业存在"能用模型不会调优"的痛点

      真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

      二、如何学习大模型 AI ?


      🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

      由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

      但是具体到个人,只能说是:

      “最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

      这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

      我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

      我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

      1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
      2️⃣ RAG系统:让大模型精准输出行业知识
      3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

      📦熬了三个大夜整理的《AI进化工具包》送你:
      ✔️ 大厂内部LLM落地手册(含58个真实案例)
      ✔️ 提示词设计模板库(覆盖12大应用场景)
      ✔️ 私藏学习路径图(0基础到项目实战仅需90天)

       

      第一阶段(10天):初阶应用

      该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

      *   大模型 AI 能干什么?
      *   大模型是怎样获得「智能」的?
      *   用好 AI 的核心心法
      *   大模型应用业务架构
      *   大模型应用技术架构
      *   代码示例:向 GPT-3.5 灌入新知识
      *   提示工程的意义和核心思想
      *   Prompt 典型构成
      *   指令调优方法论
      *   思维链和思维树
      *   Prompt 攻击和防范
      *   …

      第二阶段(30天):高阶应用

      该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

      *   为什么要做 RAG
      *   搭建一个简单的 ChatPDF
      *   检索的基础概念
      *   什么是向量表示(Embeddings)
      *   向量数据库与向量检索
      *   基于向量检索的 RAG
      *   搭建 RAG 系统的扩展知识
      *   混合检索与 RAG-Fusion 简介
      *   向量模型本地部署
      *   …

      第三阶段(30天):模型训练

      恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

      到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

      *   为什么要做 RAG
      *   什么是模型
      *   什么是模型训练
      *   求解器 & 损失函数简介
      *   小实验2:手写一个简单的神经网络并训练它
      *   什么是训练/预训练/微调/轻量化微调
      *   Transformer结构简介
      *   轻量化微调
      *   实验数据集的构建
      *   …

      第四阶段(20天):商业闭环

      对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

      *   硬件选型
      *   带你了解全球大模型
      *   使用国产大模型服务
      *   搭建 OpenAI 代理
      *   热身:基于阿里云 PAI 部署 Stable Diffusion
      *   在本地计算机运行大模型
      *   大模型的私有化部署
      *   基于 vLLM 部署大模型
      *   案例:如何优雅地在阿里云私有部署开源大模型
      *   部署一套开源 LLM 项目
      *   内容安全
      *   互联网信息服务算法备案
      *   …

      学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

      如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

      这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

      Agentic RAG 是一种先进的信息检索和生成框架,它结合了代理(Agent)、检索增强生成(Retrieval-Augmented Generation, RAG)以及大型语言模型(LLM)的能力。这种架构旨在更有效地处理复杂的查询请求,并提供更加准确的答案。 核心特点包括: - 动态编排机制:利用AI代理的灵活性来适应不同类型的用户需求,调整检索与生成策略以解决复杂的问题。 - 查询优化:当初始检索结果不理想时,系统会尝试改进查询条件或者采用其他手段提高结果质量。 - 工具调用:可以集成外部工具和服务,例如特定领域的API或数据库访问权限,从而扩展系统的功能范围。 - 多步推理能力:支持需要连续逻辑步骤才能完成的任务解答过程。 - 应用于各个领域:可以根据具体的应用场景创建专业的文档代理(Doc Agent),如财务、法律等领域,帮助收集相关信息并形成综合性的报告文本。 为了使 Agentic RAG 更加实用,在实际应用中通常还会涉及到以下几个方面的工作: 1. 定义明确的目标群体及其常见问题类型; 2. 设计合理的数据源接入方案确保获取高质量的信息资源; 3. 开发高效的算法实现快速而精确的结果匹配; 4. 测试和完善整个流程保证稳定可靠的用户体验。 通过这种方式,Agentic RAG 能够显著提升自动化问答服务的质量,特别是在面对那些涉及广泛背景知识和技术细节的情况下表现尤为突出。
      评论
      添加红包

      请填写红包祝福语或标题

      红包个数最小为10个

      红包金额最低5元

      当前余额3.43前往充值 >
      需支付:10.00
      成就一亿技术人!
      领取后你会自动成为博主和红包主的粉丝 规则
      hope_wisdom
      发出的红包
      实付
      使用余额支付
      点击重新获取
      扫码支付
      钱包余额 0

      抵扣说明:

      1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
      2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

      余额充值