MCP、RAG、Function Calling、Agent与微调如何重塑未来应用

 2025年,AI技术正经历从“模型崇拜”到“场景适配”的深刻转变。企业不再满足于通用模型的“平均能力”,而是通过MCP、RAG、Function Calling、Agent与微调等技术组合,搭建适配业务的“AI乐高”。这些技术如何定义边界?如何协同创造价值?本文将从定义与核心功能、优劣势对比、场景应用三个维度为大家拆解,希望能有所帮助。

一、技术定义与核心功能

MCP(模型上下文协议):AI生态的“万能接口”

定义:由Anthropic提出的开放协议,标准化大模型与外部工具、数据的交互方式,实现“一次开发,全平台通用”。

功能:

①动态工具发现:AI模型无需预定义函数即可调用新工具。

②跨平台集成:统一对接Slack、ERP等异构系统。

③权限隔离:敏感操作需二次确认,保障企业数据安全。

RAG(检索增强生成):大模型的“外接大脑”

定义:通过向量数据库检索外部知识,增强大模型回答的专业性。

功能:

①知识动态更新:政策变更次日即可生效。

②可解释性增强:答案标注引用来源(如《XX法规》第X条)。

③冷启动友好:仅需结构化知识库即可覆盖80%基础场景。

Function Calling:大模型的“机械臂”

定义:允许大模型通过JSON指令调用外部API,突破训练数据限制。

功能:

①实时数据获取:天气、股价等动态信息查询。

②系统操作执行:控制智能家居、操作数据库。

③复杂任务分解:旅行规划需串联天气、航班、酒店API。

Agent(智能体):AI的“自动驾驶模式”

定义:具备记忆、规划、工具使用能力的自主应用系统。

功能:

①多步骤推理:拆解“策划营销方案”为竞品分析、预算分配等子任务。

②环境感知:结合企业数据与业务规则动态调整决策。

③人机协同:AI处理结构化任务,人工聚焦模糊判断。

微调(Fine-tuning):行业的“定制裁缝”

定义:基于领域数据调整模型参数,提升特定任务表现。

功能:

①领域适配:医疗模型学习CT影像诊断规则。

②成本优化:蒸馏小模型推理速度提升3-10倍。

③隐私保护:本地化部署避免数据外泄。

二、技术优劣势对比

图片

三、技术协同应用场景

场景1:智能法务助手

技术组合:RAG(法律条文库) + Function Calling(合同比对)------ Agent(风险评估)

工作流:

1、RAG检索最新《民法典》条款;

2、Function Calling调用OCR接口解析合同;

3、配合prompt生成Agent评估违约风险并生成修订建议。

场景2:制造业预测性维护

技术组合:微调(设备参数模型) + MCP(对接ERP系统)------ Agent(故障诊断)

工作流:

1、微调模型学习相关设备数据特征;

2、MCP实时获取生产订单数据;

3、配合prompt生成Agent综合设备状态与排产计划预测故障。

场景3:跨境电商运营

技术组合:Function Calling(汇率API) + RAG(关税政策库)------ Agent(智能选品)

工作流:

1、Function Calling获取实时汇率与物流价格;

2、RAG检索目标国进口法规;

3、配合prompt生成Agent计算最优定价与物流方案。

四、企业技术选型建议

初创企业:优先RAG+Function Calling,低成本快速验证场景(如用RAGFlow搭建知识库)。

中大型企业:聚焦MCP+Agent生态,解决系统孤岛问题(如用MCP对接CRM/ERP)。

垂直领域:最好结合微调,通用模型难以适配行业特异性(如医疗影像诊断)。

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### MCPFunction Calling的区别及在对话系统或RAG中的应用 #### 定义核心差异 MCP(Model Capability Protocol)是一种封装了提示词、上下文资源以及工具调用的整体协议,其设计目的是为了使大型语言模型能够更好地理解复杂的任务需求并提供相应的解决方案[^2]。相比之下,Function Calling则更多地聚焦于通过特定函数接口实现对外部工具的调用功能,它是MCP生态下一种具体的实现方式之一[^1]。 #### 对话系统中的角色定位 - **MCP** 在对话系统中,MCP充当了一个全面的角色,它不仅负责构建合适的提示词以引导模型生成高质量回复,还能动态引入外部数据源作为补充材料,从而增强系统的知识覆盖面和灵活性[^2]。例如,在客服机器人领域,当遇到涉及最新政策法规咨询时,MCP可以通过预先设定好的规则自动获取权威网站上的相关内容,并将其无缝嵌入到当前会话流当中。 - **Function Calling** 而Function Calling主要侧重于执行层面的操作支持。比如在一个智能家居控制系统里,用户发出语音指令要求调节室内温度设置值,则该请求会被转化为对应API调用命令发送出去完成实际硬件调控动作[^1]。这种机制特别适合那些需要即时互动反馈的服务类型。 #### RAG架构内的运作原理 对于采用RAG方法论建设的知识密集型问答平台而言,这两种技术同样发挥着不可替代的重要作用: - **利用MCP优化查询过程** 当接收到用户的提问后,基于MCP的设计思路可以先对其进行语义解析拆解成多个子问题单元;随后分别针对这些部分从数据库或者其他在线资源池里面检索匹配度较高的候选答案集合;最后再综合考量各个维度得分情况挑选最优选项呈现给访问者查看[^2]。 - **借助Function Calling扩展服务能力** 如果某些特殊情况下仅依靠现有存储的信息不足以解答全部疑问点的话,还可以进一步激活关联的功能模块去主动收集额外必要的辅助资料。比如说统计某段时间内某个产品销量趋势图展示需求场景下,就可以启动图表绘制插件生成可视化图形结果返回前端界面显示出来供参考使用[^1]。 --- ```python class DialogueSystem: def __init__(self, use_mcp=True, enable_function_calling=False): self.use_mcp = use_mcp self.enable_function_calling = enable_function_calling def process_query(self, query): if self.use_mcp: context_enriched_response = self.apply_mcp(query) return context_enriched_response elif self.enable_function_calling: external_tool_result = self.invoke_function_calling(query) return external_tool_result def apply_mcp(self, query): # Simulate applying MCP protocol to enrich response with contextual data. enriched_data = fetch_contextual_resources(query) processed_output = generate_response_with_context(enriched_data) return processed_output def invoke_function_calling(self, function_name, parameters=None): # Example of invoking an external tool via Function Calling mechanism. result = call_external_api(function_name, parameters) formatted_output = format_results_for_user(result) return formatted_output ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值