智能AI预问诊系统产品设计解析
结合观海上一篇关于智能AI电子病历系统的内容,这次就“智能AI预问诊+智能AI电子病历”两个内容是可以互为补充,如:患者可在线上挂号后追加预问诊,或线下到达各科室的候诊区后扫码进行预问诊,提前描述自己的病情信息,发送给医生。
医生端可同步查阅患者电子病历,在患者实际就诊前,医生对患者的情况有了一个具体的了解,这样可以节省沟通时间有效提升门诊效率。所以本次就基于AI预问诊系统的信息化产品设计,做一下拆解和功能实现了解。
2024年11月6日,国家卫生健康委办公厅、国家中医药局综合司、国家疾控局综合司联合印发《卫生健康行业人工智能应用场景参考指引》。卫生健康行业“人工智能+”医疗服务管理的应用场景参考指引中包含:
医学影像智能辅助诊断、医学影像数据智能辅助质控、临床专病智能辅助决策、基层全科医生智能辅助决策、医学影像智能辅助治疗、手术智能辅助规划6大应用场景。
在我国推进医疗行业数字化转型期间,AI+各类细分场景有望逐步落地,AI技术能够帮助处理和分析大量医疗数据,辅助医生诊断和治疗,降低人力成本的同时提高效率。
01AI智能预问诊流程
在现有的就医模式下,患者在医院挂号后,往往需要长时间等待,才能与医生进行面对面交流,而实际问诊时间却相对短暂,大量时间耗费在排队、候诊环节。
一方面,有限的问诊时间使得医生难以全面、深入地了解患者病情。患者由于紧张、缺乏医学知识等因素,可能在短时间内无法条理清晰地陈述病史、症状细节,导致医生获取关键信息不充分,影响诊断准确性,增加漏诊、误诊风险。在繁忙的门诊时段,平均每位患者的实际问诊时间会更加短,复杂病例更是难以在如此短时间内沟通透彻。
另一方面,医疗资源分布不均衡,大城市、大医院集中了优质医疗资源,吸引大量外地患者前来就医,进一步加剧了门诊拥挤状况。基层医疗机构因缺乏高水平专家及先进技术支持,患者信任度较低,大量患者舍近求远去上级医院就诊,造成医疗资源的浪费与错配。
智能AI预问诊应用于患者就诊前进行智能预问诊的信息化系统,是基于医疗AI、自然语言处理技术、医学知识图谱等核心技术,智能理解患者主诉,模拟医生真实问诊思路进行智能追问。
用户就诊前,智能预问诊提供问答对话式的预问诊服务,根据用户的症状,模拟医生的问诊,以人机对话的方式询问用户相关病史信息,并将采集到的病史信息按病历格式结构化,包括主诉、现病史、既往史、过敏史、家族史等。最后生成一份诊前病历提供给医生,能够帮助医生提高接诊效率。
同时可对接电子病历系统自动生成电子病历,可直接写入电子病历系统(EMR),提升门诊就医体验与医疗效率。
如图:AI预问诊流程
1. 患者端流程
症状自述:患者通过文字或语音输入主诉(如“持续头痛3天,伴有发热”)。
智能问诊对话:
AI通过多轮动态问答细化症状(如疼痛部位、持续时间、既往病史等)。
实时解析语义,生成结构化病历数据。
AI智能分析与导诊建议:
结合医学知识库匹配潜在疾病,推荐就诊科室(如神经内科、急诊科)。
对高危症状(如胸痛、呼吸困难)触发紧急预警。
生成预问诊报告:输出包含症状摘要、建议检查项、初步注意事项的电子报告。
数据同步至医生工作站:报告自动对接医院HIS/EMR系统,供医生提前查看。
2. 医生端流程
预审报告:医生接诊前快速浏览AI生成的病史摘要及风险提示。
补充问诊:根据AI未覆盖的细节进行针对性追问。
诊断决策支持:系统提供相似病例参考及鉴别诊断建议。
02 系统技术落地实现方式
AI 智能预问诊系统通过智能化手段提前收集、整理患者病情信息,辅助医生更高效、精准地开展诊疗工作,涵盖线上线下多种就医场景。
系统架构依托云计算技术,具备强大的数据存储、运算与传输能力,可快速处理海量患者数据。
如图:智能AI预问诊技术架构
AI智能预问诊系统技术实现核心要素:
1. 智能问诊引擎
多模态交互:支持文本、语音、图片(如皮疹拍摄)输入。
动态推理能力:基于症状关联性自动调整问诊路径(如腹痛患者优先排除急腹症)。
多语言支持:覆盖普通话、方言及多语种问诊场景。
2. 医学知识库
权威数据源:整合临床指南、药品库、疾病库、检验检查知识库。
持续更新机制:通过真实诊疗数据反馈优化算法模型。
3. 导诊分诊引擎
基于症状权重和科室匹配度算法,推荐最优就诊路径。
支持分级诊疗:区分“急诊/门诊/基层医疗机构”优先级。
4. 电子病历生成
结构化输出:包含时间轴症状记录、用药史、过敏史、家族病史。
患者可读版本:提供通俗易懂的健康建议(如“暂避免剧烈运动”)。
5. 数据管理与隐私安全
符合HIPAA/GDPR医疗数据规范,支持匿名化处理。
患者授权机制:患者登录小程序/公众号后,可自主控制数据共享范围。
6. 多终端支持
微信小程序/H5/APP/医院自助机多端适配。
支持与智能穿戴设备(如心率监测)数据联动。
03 智能AI预问诊系统功能介绍
AI 智能预问诊系统是通过AI智能化手段提前收集、整理患者病情信息,辅助医生更高效、精准地开展诊疗工作,涵盖线上线下多种就医场景。系统架构依托云计算技术,具备强大的数据存储、运算与传输能力,可快速处理海量患者数据。
患者可以通过多个渠道访问AI预问诊系统,患者既可以在医院挂号后通过候诊区终端设备登录系统,也可在移动端(手机 APP微信小程序等)提前在录入信息。通过AI智能引导患者,根据患者初步信息,逐步提示患者补充关键细节,确保信息采集全面、规范。
核心算法基于深度学习、自然语言处理等前沿 A 技术,对患者输入的非结构化信息进行结构化处理,提取关键症状、病史、时间节点等要素,并结合医学知识图谱与临床大数据,初步分析病情,生成可能的疾病诊断列表及相关问题,为后续医生问诊提供参考。
如图:智能AI预问诊系统架构
以下是对各个功能模块的功能介绍:
一、患者端
智能问答:通过AI技术与患者进行智能互动,解答患者的问题。
图文上传:患者可以通过文字和图片上传他们的症状和相关信息。
3D症状演示:利用3D技术直观展示和解释症状,帮助患者更好地描述和理解自身情况。
病历预览:患者可以查看和管理自己的病历信息。
二、医生端
问诊摘要:为医生提供患者问诊的简要信息,帮助医生快速了解患者情况。
诊断建议:根据系统分析,为医生提供诊断建议,辅助医生进行决策。
医嘱模板:提供常用的医嘱模板,方便医生快速开具医嘱。
三、管理端
1、患者管理
用户列表:管理患者用户的信息列表。
用户信息:详细管理患者用户的基本信息。
会话记录:记录患者与系统的互动会话内容。
病历信息:管理患者的病历资料。
2、预问诊管理
基础配置:设置预问诊的基本参数和功能。
能力配置:配置预问诊系统的各项能力。
预问诊会话列表:列出所有的预问诊会话记录。
意图集合管理:管理和维护预问诊中的意图识别集合。
3、病历管理
病历生成记录:记录病历文件的生成情况。
病历模板:提供病历书写的模板,提高病历记录的效率和规范性。
病例规则:设定和管理病历记录的规则。
4、规则管理
设置规则:定义系统的运行规则和逻辑。
规则组管理:将相关规则分组管理,便于维护和调用。
问题库管理:管理常见问题库,优化问答体验。
流程管理:管理系统的各个业务流程,确保顺畅运行。
5、质控管理
指标监控:对系统各项指标进行监控,保证系统正常运行。
问诊指标:分析和评估问诊的各项指标,提升问诊质量。
诊断指标:监控诊断相关指标,提高诊断准确性。
指标管理:综合管理和维护各类指标数据。
6、知识库管理
知识图谱设计:构建和维护系统的知识图谱。
病种知识管理:对各种病种知识进行系统化管理和更新。
多模态知识:管理和维护多模态(如文本、图像、语音等)的知识信息。
动态知识更新:实时更新和管理最新的知识信息。
7、系统总体
用户管理:管理系统的用户账户和权限。
角色权限:配置和管理不同用户的角色和权限。
数据安全:保障系统数据的安全性和隐私保护。
系统日志:记录系统的运行日志,便于问题追踪和维护。
04 AI预问诊实践案例
1、背景介绍
某三甲医院日门诊量超8000人次,传统分诊台常出现患者等待时间长(平均35分钟)、主诉描述不清导致分诊错误率高达18%的问题。2024年该院引入AI智能预问诊系统,并部署于医院互联网医院的微信公众号、小程序和院内自助终端。
2、AI智能预问诊应用实现
1)、患者症状智能采集:
a).患者通过自然语言描述症状(如"持续三天发烧伴咳嗽"),系统自动提取关键医学特征。
b).3D人体模型引导患者精准定位疼痛部位,准确率提升至92%
2)、分级预警机制:
a).识别37种急危重症特征(如胸痛伴冷汗)自动触发红色预警,优先安排就诊。
b).区分专科需求,将妇科腹痛与普外科腹痛分诊准确率从68%提升至89%。
3)、电子病历预生成:
a).自动生成结构化病历,包含症状持续时间、加重因素等8个关键维度。
b).医生接诊时可直接调阅,问诊时间缩短40%。
3、运营6个月后实施成效
1、患者候诊时间降至12分钟。
2、分诊错误率下降至5%以下。
3、急诊科非急症患者占比从43%降至19%。
4、患者满意度评分从82分升至94分。
05 总结介绍
AI智能预问诊作为医疗数字化转型的重要突破,通过自然语言处理、知识图谱和机器学习技术,有效重构了传统就诊流程。系统通过智能症状采集、分级预警和病历预生成三大核心功能,显著提升了医疗资源利用效率:患者候诊时间平均缩短60%以上,分诊准确率突破90%,医生问诊效率提升40%。
在分级诊疗、健康管理等场景中展现出独特价值,既缓解了"看病难"问题,又为构建诊前-诊中-诊后全周期健康管理服务体系奠定了基础。
随着多模态交互和个性化推荐技术的发展,AI预问诊正从效率工具向智能健康管家演进,其深度应用将持续推动医疗服务模式的智能化变革。
本次关于AI智能预问诊系统的内容,就跟大家分享到这里,希望通过这篇文章,大家对AI在医疗领域的应用落地,有一个更加直观的了解。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】