在科技飞速发展的浪潮中,人工智能已经渗透到各个领域,而医疗行业作为关系到人类生命健康的至关重要领域,正逐渐成为大模型厂商激烈角逐的新战场。
特别是近段时间以来,AI 医疗领域消息不断,前有 OpenAI 发布 HealthBench 评估 AI 模型,后有美股 AI 医疗龙头 Hims&Hers Health、Tempus、Grail、Doximity 集体大涨,短短一个月时间涨幅分别达到 102%、49%、54%、16%,再加上日前国内传出月之暗面 Kimi 正开始积极布局 AI + 医疗,随着 AI 技术在医疗领域的应用日益广泛,医疗领域已成为大模型厂商技术实力与商业化能力的试金石。
为什么大模型厂商钟爱 AI 医疗?
大模型厂商对 AI 医疗领域的布局热度持续高涨,其背后有市场、技术等多重因素影响。
目前,全球医疗资源短缺与老龄化现象为全球范围内的医疗带来了巨大的压力,尤其在发展中国家的基层医疗,医生、护士等专业医疗人员缺口巨大。
根据国家卫健委数据,截至 2020 年底,我国共有医师 408.6 万人,每千人口医师数为 2.9 人。2020 年,全国医疗卫生机构总诊疗人次达 77.4 亿人次,居民到医疗卫生机构平均就诊 5.5 次,医院医师日均担负诊疗 5.9 人次,住院 2.1 床。专家表示,虽然中国医生从业人数每年都有增长,但和居民就医需求相比,医疗资源依旧比较紧缺。
联合国预测,到 2050 年,全球 60 岁以上人口将达 21 亿,慢性病管理、长期护理等需求激增,在这一背景下,供需矛盾催生技术刚需,AI 技术在预防医学、健康管理中的应用价值凸显,医疗行业的天然需求成为大模型厂商入局的第一重因素。
以 OpenAI 为例,进入 2024 年以来,OpenAI 在医疗领域动作频繁。
2024 年 6 月,OpenAI 与 Color Health 合作开发 Cancer Copilot,基于 GPT-4o 模型整合患者医疗数据与临床指南,生成个性化治疗计划,做到在临床试用中将医生分析患者记录的时间从数周缩短至 5 分钟,并识别出 4 倍以上缺失的实验室或病理结果。
同年 7 月,Sam Altman 宣布成立 Thrive AI Health,专注开发 “AI 健康教练” 平台。该平台结合 OpenAI 的生成式 AI 技术(如长期记忆能力增强模型)和 Thrive Global 的医疗行为数据,可以为慢性病患者提供个性化健康指导,涵盖睡眠、营养、压力管理等场景。
在这些合作案例中,AI 健康助理已经成为生成式 AI 在医疗参与的最为擅长的领域之一,通过利用 OpenAI 生成式 AI 的能力构建了 AI 健康助理,对用户数据进行分析并辅助人工为其提供包括饮食、行为习惯等方方面面的指导。
AI 能够融入医疗领域的前提是,模型规模在不断扩大,训练数据也在不断丰富,大模型在语言理解、生成、图像识别、目标检测等各种任务上的准确率和性能都得到了显著提高。大模型的应用范围不断拓展,从最初的自然语言处理和计算机视觉领域,逐渐延伸到包括医疗在内的多个领域。在医疗领域,大模型可以用于疾病诊断、药物研发、医疗影像分析等多个场景。
而这也带来了大模型厂商入局医疗领域的第二重因素,即 AI 医疗的商业价值和市场潜力。
从全球范围来看,医疗人工智能市场规模呈现出迅猛的增长态势。根据知名市场调研公司 ReportLinker 的数据,到 2028 年,全球医疗保健 AI 市场规模将从 2023 年的 146 亿美元增长到 1027 亿美元,期间复合年增长率为 47.6%。
其中中国作为全球医疗产业重要的市场,在 AI 医疗领域也呈现出强劲的发展势头。前瞻产业研究院预计,中国 AI 医疗行业市场规模将会以每年超过 25% 的增速保持增长,2028 年市场规模将接近 300 亿元,中国 AI 医疗市场规模将在几年内实现显著增长,在全球市场中的占比也将逐步提高。
对于大模型厂商来说,随着全球老龄化人口的增长和慢性病的流行,医疗需求日益增加,而 AI 可以通过提高诊断效率和准确性来满足这些需求,在这一背景之下,AI 医疗市场在未来几年内将保持高速增长,为大模型厂商提供了广阔的发展空间。
在疾病诊断方面,AI 医学影像技术能够快速、准确地分析 X 光、CT、MRI 等影像数据,帮助医生发现早期病变,提高诊断的准确率。谷歌 DeepMind 公司开发的 AI 系统,能够在糖尿病视网膜病变的筛查中为超过 50 种眼科疾病做出正确的转诊决定,准确度达到 94%,高于大多数人类医生,为早期诊断和治疗提供了有力支持。
此外在疾病预测、药物研发医疗管理方面,AI 也通过对患者的病史、基因数据、生活习惯等多源数据的分析,预测疾病的发生风险、缩短药物研发周期、提高医疗服务的质量和效率。
市场潜力之外,通用大模型“红海”是厂商转型医疗的更深层原因
由于全球医疗资源紧张和 AI 医疗的市场潜力,我们可以明显发现,越来越多的大模型厂商开始布局起了 AI 医疗。
除了前文提到的 OpenAI,近期在国内也有一家大模型公司尝试转向医疗赛道。
日前,有媒体爆料月之暗面将对 AI 医疗产品进行布局,旨在提升 Kimi 在专业领域的搜索质量,同时探索 Agent 等产品方向。
针对此消息,月之暗面回应称,公司核心是加强财经、法律、医学等专业领域的搜索信源质量,期望为用户提供更可信、可靠的高质量回答。
据悉,月之暗面开始布局 AI 医疗的时间可能还要更早一些。2024 年年底,月之暗面就被传出已经开始组建医疗产品团队。进入 2025 年 3 月,月之暗面还持续加大了在医疗领域的投入力度,显著增加了对医疗相关背景人才的招聘。
通过广纳医疗专业人才,月之暗面意在搭建用于模型训练的知识库,为后续在 AI 医疗方面的技术研发和产品打造奠定坚实基础。知情人士透露,目前月之暗面对 AI 医疗产品的布局尚处于早期探索阶段,主要工作围绕完善旗下产品 Kimi 本身的功能生态展开。
虽然月之暗面并未透露其 AI 医疗产品/服务的最终落地形态,但结合 Kimi 的定位,可以推测最终的服务实行很可能接近 Sam Altman 的 Thrive AI Health,不提供具体的诊断服务,而是类似于 AI 健康助手,提供辅助健康方向的建议。
回顾 Kimi 的发展历程,从 2023 年 10 月推出首个支持输入 20 万汉字的智能助手产品 Kimi Chat 后,月之暗面在技术领域就获得了广泛关注,彼时,Kimi 具备长文总结和生成、互联网搜索、数据处理、编写代码、用户交互、翻译等多项功能。
然而,自出圈以来,除个别功能组件更新外,Kimi 的产品形态和功能在 2024 年并无大的迭代。面对竞争愈发激烈的市场环境,尤其 DeepSeek、豆包、元宝等对手的强势崛起,月之暗面正面临着产品功能单一的风险。
在这样的背景下,布局 AI 医疗领域成为月之暗面增强 Kimi 竞争力的重要战略决策。并且在此前,月之暗面也有类似的扩圈操作。
2025 年 4 月,月之暗面官宣与财新合作,当用户在 Kimi 上提问财经相关内容时,Kimi 会结合财新传媒旗下专业报道内容,通过模型生成答案。
再加上此次的 AI 医疗布局,通过对财经、医疗领域搜索信源质量的加强,月之暗面急于提升 Kimi 专业服务能力,让大模型回归产品能力本身。
月之暗面并非国内第一家转型 AI 医疗的初创大模型企业,众所周知,在月之暗面之前,另一位 AI 六小龙之一的百川智能早早就选择了 All in 医疗领域,不过,在 AI 医疗领域的布局上,百川智能和月之暗面有着显著区别。
百川智能自 2023 年 4 月成立后,迅速崛起为国内 AI 大模型领域的佼佼者。2025 年 2 月,百川智能宣布对 ToB 业务进行重大调整,裁撤专注金融行业的 B 端组,明确将资源聚焦于 AI 医疗领域。
在战略路径上,百川智能采用 “造医生 - 改路径 - 促医学” 的策略,全力聚焦 AI 儿科、AI 全科、精准医疗和百小应等四大核心领域。其儿科 AI 模型 “福棠・百川” 已展现出临床推理能力,涵盖儿童常见病与疑难病症的全方位知识体系,能整合最佳医学证据,为患儿提供个性化、科学的诊疗方案,将诊疗效率提高至少 20% 。
此外,百川智能还通过开源 Baichuan-M1-14B 医疗增强通用大模型推动 AI 医疗生态发展,该模型在权威医学知识和临床能力评测上成绩优异,超越了更大参数量的 Qwen2.5-72B-Instruct,与 o1-mini 也相差无几。
可以说,百川智能在 AI 医疗领域布局更为深入且更切入 B 端产业,已在技术研发和产品应用上取得一定成果。
至此,我们从百川智能和月之暗面的“转型”可以发现,大模型厂商钟爱 AI 医疗或许还有另一层深层原因。
从市场竞争格局来看,通用大模型领域已然是一片红海,DeepSeek 等开源模型迅速崛起,众多玩家纷纷入局加剧了整个市场的竞争。在规模、用户数量不占优势的情况下,选择硬拼往往很难脱颖而出。
而医疗 AI 领域尽管也有不少参与者,但目前仍处于发展初期,有着广阔的发展空间,选择医疗领域,有更大概率能够避开通用大模型市场的激烈竞争,在新的赛道抢先起跑。
当然,初创大模型公司转向 AI 医疗,更重要的因素还在于技术积累与适配性。百川智能在人工智能领域已深耕多时,拥有坚实的技术基础。语言模型作为其核心技术之一,在处理复杂医疗数据、智能问答和自主学习等环节能发挥关键作用。
毕竟虽然 AI 医疗仍在起步阶段,但入局者已经开始次序涌入,百度、腾讯、阿里、京东都推出了自己的医疗大模型,展现出在医疗大模型方面的技术实力和布局决心。
面对这些疯狂扩圈的大厂,即使占据了先发优势,初创公司也必须构筑起技术积累的护城河,不然,转型其他垂直领域的情况可能还会再次出现。
结语
AI 医疗成为大模型厂商必争之地已成事实,随着数字技术与大数据的飞速发展,医疗行业正迎来深刻变革,AI 与医疗的融合已是大势所趋。医疗行业关乎每个人的健康,是社会发展的重要基础,然而,当前医疗资源分布不均、医疗服务效率有待提高等问题依然突出,借助 AI 技术,或许就能够优化医疗资源配置,提升医疗服务的可及性和质量。
而对于企业来说,转型医疗除了基于对市场环境、自身优势以及行业趋势的综合考量外,或许还需要包含一层对生命科学领域的责任感。未来,在技术升级的加持下,必将出现真正媲美人类医生的 AI 医生,届时,这些 AI 医生将承担起疾病判断、个性化健康管理的重担,填补巨大的医疗人员缺口,而如何规避 AI 医疗的风险,提高 AI 医生的可靠性,将成为大模型厂商们新的课题。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】