RAG vs Fine-Tuning 微调哪种大模型(LLM)技术更好?

数据科学和机器学习的研究人员和从业者都在不断探索创新策略来增强语言模型的能力。在众多方法中,出现了两种突出的技术,即检索增强生成 (RAG)微调。本文旨在探讨模型性能的重要性以及 RAG 和微调策略的比较分析。

模型性能在 NLP 中的重要性

[聊天机器人]、[语言翻译]服务和[情感分析器]等各种应用程序的成功取决于模型理解人类语言中嵌入的上下文、细微差别和文化复杂性的能力。改进的模型性能不仅可以增强用户体验,还可以拓宽应用范围,使[自然语言处理]成为当今数字领域不可或缺的工具。

增强用户体验

  • 改进的模型性能可确保 NLP 应用程序能够有效地与用户沟通。这对于聊天机器人、虚拟助手和客户支持系统等应用程序至关重要,因为准确理解用户查询的能力至关重要。
  • 此外,搜索引擎和智能设备中普遍存在的自然语言界面也严重依赖 NLP。更高的模型性能可带来更直观、更无缝的交互,从而带来积极的用户体验。

信息检索的准确率

  • 在[新闻摘要]或数据提取等领域,准确的模型性能可确保提取相关细节,减少噪音并增强向用户呈现的信息的可靠性。
  • 这提高了搜索结果的精确度和相关性,从而提高了用户找到所需信息的能力。

语言翻译与多语言交流

  • NLP 模型有助于通过翻译服务打破语言障碍。高模型性能对于准确的翻译至关重要,可促进全球化世界中的跨文化交流。
  • 此外,语言具有微妙性,因此准确的翻译需要能够理解和保留含义细微差别的模型。模型性能的提高有助于更忠实地捕捉预期的细微差别。

情绪分析与观点挖掘

  • 企业利用情绪分析来衡量客户对其产品或服务的反馈和情绪。高性能情绪分析模型使公司能够根据对公众舆论的准确评估做出数据驱动的决策。

什么是 RAG?

检索增强生成 (RAG) 通过融合基于检索和基于生成的方法的优势,代表了自然语言处理 (NLP) 的范式转变。

RAG的主要工作原理如下:

  • 预训练语言模型集成:RAG 从[预训练]语言模型(如 BERT 或 GPT)开始,作为系统的生成主干。之后,预训练模型对语言模式和语义具有深刻的理解,为后续任务奠定了坚实的基础。
  • 知识检索机制: RAG 的一个显著特点是包含知识检索机制,使模型能够在生成过程中访问外部信息。它可以采用各种技术,如密集检索方法或传统搜索算法,从庞大的存储库中提取相关知识。
  • 生成主干:预训练语言模型构成 RAG 的生成主干,负责根据输入和检索到的知识生成连贯且上下文相关的文本。
  • 上下文理解:由于集成了预训练语言模型,RAG 在上下文理解方面表现出色,使其能够掌握输入文本中的细微差别和依赖关系。
  • 联合训练: RAG 通过优化预训练模型的生成能力和知识检索机制的有效性进行联合训练。这种双重优化确保模型在适当利用外部信息的同时产生高质量的输出。
  • 自适应知识集成: RAG 提供灵活的知识集成功能,可适应各种领域和任务。现在,模型可以根据输入的性质和生成任务的要求动态调整对外部知识的依赖。
  • 高效的训练和推理:RAG 在引入知识检索组件的同时,还努力确保训练和推理过程中的计算效率,解决与可扩展性和实时应用相关的潜在挑战。

优点

使用 RAG 有多种优势,如下所述:

  • 增强的上下文理解: RAG 擅长理解上下文,因为它在生成过程中整合了外部知识。
  • 多样化和相关的输出: 检索机制使模型能够产生多样化和上下文相关的输出,使其适用于广泛的应用。
  • 知识整合的灵活性: RAG 在选择知识源方面提供了灵活性,从而可以适应各个领域。

限制

RAG不是具有所有优点,RAG 也有其自身的局限性,如下所述:

  • 计算强度: 检索机制的计算量可能很大,影响实时应用和可扩展性。这种策略使模型规模非常大,如果计算资源不足,很难与实时应用集成。
  • 对外部知识的依赖: RAG 的有效性依赖于外部知识的质量和相关性,这可能会引入偏见或不准确性。

什么是微调?

自然语言处理 (NLP) 中的微调是一种棘手的策略,它涉及在特定的、通常是特定于任务的数据集上重新训练预先存在或预先训练的语言模型,以增强其在目标领域的性能。

Fine-tuning 的主要工作原理如下:

  • 预训练模型初始化: 与 RAG 类似,微调也从初始化预训练语言模型开始,该模型之前已在大型多样化数据集上进行过训练。预训练阶段使模型具备对语言模式、语义和上下文的广义理解,这使其成为各种 NLP 任务的宝贵起点。
  • 特定任务数据集: 预训练后,模型将在较小的特定任务数据集上进行微调,该数据集针对目标应用程序或领域的细微差别进行量身定制。此数据集包含与特定任务相关的示例,使模型能够调整和专门化其知识以提高性能。
  • 迁移学习: 微调利用迁移学习的原理,即将预训练阶段获得的知识迁移并进一步细化为目标任务。这种知识迁移使模型能够更好地推广到新任务的具体细节,即使在特定任务的数据有限的情况下也是如此。
  • 适应特定任务模式: 微调过程允许模型根据目标数据集中存在的特定任务模式调整其参数。通过在特定任务数据集上进行训练期间调整其权重和偏差,该模型可以提高其捕获与预期应用相关的特征和模式的能力。我们可以采用各种评估指标(如准确率、WER 等)来检查微调状态。
  • 防止过度拟合: 考虑到对有限的特定任务数据进行过度拟合的潜在风险,微调通常会结合正则化技术或丢失层,以防止模型变得过于专业化并在新的、看不见的数据上表现不佳。

优点

微调模型具有一些有用的优点,如下所述:

  • 特定任务的适应: [微调]允许模型适应特定任务,如[音乐流派分类]、音频分类等,这使得它们在特定领域的应用中更有效。
  • 有效利用有限数据: 在特定任务数据有限的场景中,微调可以利用预先存在的知识,防止过度拟合。
  • 改进的泛化: 微调模型通常表现出对目标任务的改进的泛化,特别是当预训练模型具有鲁棒性时。

限制

与 RAG 一样,Fine-tuning 也不是一种万无一失的策略。其局限性如下:

  • 过度拟合的风险: 在小数据集上进行微调存在过度拟合的风险,尤其是当目标任务与预训练数据存在显著差异时。
  • 领域特定数据依赖性: 微调的有效性取决于领域特定数据的可用性和代表性。如果我们选择了错误的预训练模型,那么微调对于该特定任务来说就是无用的。

选择哪种策略?

为自然语言处理 (NLP) 任务选择正确的策略取决于各种因素,包括任务的性质、可用资源和特定的性能要求。下面我们将讨论检索增强生成 (RAG) 与微调之间的比较分析,并考虑可能影响决策过程的关键方面:

RAG 与微调

RAG 与微调

RAG微调
任务性质RAG 非常适合需要情境理解和结合外部知识的任务,如问答或内容总结、财务报告生成等。微调适用于适应领域内特定模式至关重要的任务,如情绪分析、文档分类或更具创造性的任务(音乐或小说生成)。
数据可用性RAG 始终需要一个知识库才能进行有效检索,这可能会限制其在外部信息稀疏的领域的适用性。微调更适应任务特定数据有限的场景,利用预训练阶段的预先存在的知识。
计算强度RAG 的计算量非常大,特别是在检索过程中,可能会影响实时应用。微调通常对计算的要求较低,因此更适合对延迟要求严格的应用程序。
输出分集由于其知识检索机制,RAG 擅长生成多样化、与上下文相关的输出。微调只能在训练期间有效地适应特定领域,而对于新领域,我们需要进行整体的重新训练。
知识来源RAG 完全依赖于外部知识源,这可能会根据检索到的信息的质量引入偏差或不准确性。微调不能有偏差,而只能局限于预训练期间编码的知识,这在适应全新或小众领域时可能会带来挑战。
用例RAG 非常适合那些受益于生成能力和访问外部信息(例如客户支持中的聊天机器人或 ChatGPT)的任务。微调对于特定领域的应用(例如医疗文档分析或特定行业的情感分析)非常有效。
训练复杂性RAG 涉及生成组件和检索组件的联合训练,增加了训练过程的复杂性。微调涉及更简单的训练程序,尤其是在利用具有现成的特定任务数据集的预训练模型时。

结论

我们可以得出结论,RAG 和微调都是增强 NLP 模型的好策略,但一切都取决于我们要执行什么类型的任务。请记住,这两种策略都是从预训练模型开始的,RAG 没有任何过度拟合问题,但会产生有偏差的输出。另一方面,微调不会产生有偏差的数据,但如果我们从错误的预训练模型开始,那么微调就变得毫无用处。最终,RAG 和微调之间的选择取决于手头的具体任务和要求。

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

  • 26
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值