好书推荐!BERT基础教程:Transformer大模型实战(附文档)

如果你是一名自然语言处理从业者,那你一定听说过大名鼎鼎的 BERT 模型。

BERT(Bidirectional Encoder Representations from Transformers)在2018年迎来了它的辉煌时刻:在机器理解测试SQuAD中独占鳌头,并在其他十项NLP挑战中取得了压倒性胜利,实现了在多个领域超越人类表现的历史性成就。
在这里插入图片描述
BERT模型通过预训练与微调的技术手段,致力于解决自然语言处理(Natural Language Processing, NLP)的各种任务。这些任务涵盖了问答系统、情感分析以及语言推理等多个方面。

朋友们如果需要此本 《BERT基础教程:Transformer大模型实战》,扫码获取~

书籍目录

第一部分 开始使用 BERT

第 1 章 Transformer 概览
  • 1.1 Transformer 简介
  • 1.2 理解编码器
  • 1.3 理解解码器
  • 1.4 整合编码器和解码器
  • 1.5 训练 Transformer
  • 1.6 小结
  • 1.7 习题
  • 1.8 深入阅读
第 2 章 了解 BERT 模型
  • 2.1 BERT 的基本理念
  • 2.2 BERT 的工作原理
  • 2.3 BERT 的配置
  • 2.4 BERT 模型预训练
  • 2.5 子词词元化算法
  • 2.6 小结
  • 2.7 习题
  • 2.8 深入阅读
第 3 章 BERT 实战
  • 3.1 预训练的 BERT 模型
  • 3.2 从预训练的 BERT 模型中提取嵌入
  • 3.3 从 BERT 的所有编码器层中提取嵌入
  • 3.4 针对下游任务进行微调
  • 3.5 小结
  • 3.6 习题
  • 3.7 深入阅读

第二部分 探索 BERT 变体

第 4 章 BERT 变体(上):ALBERT、RoBERTa、ELECTRA 和 SpanBERT
  • 4.1 BERT 的精简版 ALBERT
  • 4.2 从 ALBERT 中提取嵌入
  • 4.3 了解 RoBERTa
  • 4.4 了解 ELECTRA
  • 4.5 用 SpanBERT 预测文本段
  • 4.6 小结
  • 4.7 习题
  • 4.8 深入阅读
第 5 章 BERT 变体(下):基于知识蒸馏
  • 5.1 知识蒸馏简介
  • 5.2 DistilBERT 模型——BERT 模型的知识蒸馏版本
  • 5.3 TinyBERT 模型简介
  • 5.4 将知识从 BERT 模型迁移到神经网络中
  • 5.5 小结
  • 5.6 习题
  • 5.7 深入阅读

第三部分 BERT 模型的应用

第 6 章 用于文本摘要任务的BERTSUM 模型
  • 6.1 文本摘要任务
  • 6.2 为文本摘要任务微调 BERT 模型
  • 6.3 理解 ROUGE 评估指标
  • 6.4 BERTSUM 模型的性能
  • 6.5 训练 BERTSUM 模型
  • 6.6 小结
  • 6.7 习题
  • 6.8 深入阅读
第 7 章 将 BERT 模型应用于其他语言
  • 7.1 理解多语言 BERT 模型
  • 7.2 M-BERT 模型的多语言表现
  • 7.3 跨语言模型
  • 7.4 理解 XLM-R 模型
  • 7.5 特定语言的 BERT 模型
  • 7.6 小结
  • 7.7 习题
  • 7.8 深入阅读
第 8 章 Sentence-BERT 模型和特定领域的 BERT 模型
  • 8.1 用 Sentence-BERT 模型生成句子特征
  • 8.2 sentence-transformers 库
  • 8.3 通过知识蒸馏迁移多语言嵌入
  • 8.4 特定领域的 BERT 模型:ClinicalBERT 模型和BioBERT 模型
  • 8.5 小结
  • 8.6 习题
  • 8.7 深入阅读
第 9 章 VideoBERT 模型和BART 模型
  • 9.1 VideoBERT 模型学习语言及视频特征
  • 9.2 了解 BART 模型
  • 9.3 探讨 BERT 库
  • 9.4 小结
  • 9.5 习题
  • 9.6 深入阅读

习题参考答案

朋友们如果需要此本 《BERT基础教程:Transformer大模型实战》,扫码获取~

本文转自 https://blog.csdn.net/pythonhy/article/details/140936831?spm=1001.2014.3001.5501,如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值