如果你是一名自然语言处理从业者,那你一定听说过大名鼎鼎的 BERT 模型。
BERT(Bidirectional Encoder Representations from Transformers)在2018年迎来了它的辉煌时刻:在机器理解测试SQuAD中独占鳌头,并在其他十项NLP挑战中取得了压倒性胜利,实现了在多个领域超越人类表现的历史性成就。
BERT模型通过预训练与微调的技术手段,致力于解决自然语言处理(Natural Language Processing, NLP)的各种任务。这些任务涵盖了问答系统、情感分析以及语言推理等多个方面。
朋友们如果需要此本 《BERT基础教程:Transformer大模型实战》,扫码获取~
书籍目录
第一部分 开始使用 BERT
第 1 章 Transformer 概览
- 1.1 Transformer 简介
- 1.2 理解编码器
- 1.3 理解解码器
- 1.4 整合编码器和解码器
- 1.5 训练 Transformer
- 1.6 小结
- 1.7 习题
- 1.8 深入阅读
第 2 章 了解 BERT 模型
- 2.1 BERT 的基本理念
- 2.2 BERT 的工作原理
- 2.3 BERT 的配置
- 2.4 BERT 模型预训练
- 2.5 子词词元化算法
- 2.6 小结
- 2.7 习题
- 2.8 深入阅读
第 3 章 BERT 实战
- 3.1 预训练的 BERT 模型
- 3.2 从预训练的 BERT 模型中提取嵌入
- 3.3 从 BERT 的所有编码器层中提取嵌入
- 3.4 针对下游任务进行微调
- 3.5 小结
- 3.6 习题
- 3.7 深入阅读
第二部分 探索 BERT 变体
第 4 章 BERT 变体(上):ALBERT、RoBERTa、ELECTRA 和 SpanBERT
- 4.1 BERT 的精简版 ALBERT
- 4.2 从 ALBERT 中提取嵌入
- 4.3 了解 RoBERTa
- 4.4 了解 ELECTRA
- 4.5 用 SpanBERT 预测文本段
- 4.6 小结
- 4.7 习题
- 4.8 深入阅读
第 5 章 BERT 变体(下):基于知识蒸馏
- 5.1 知识蒸馏简介
- 5.2 DistilBERT 模型——BERT 模型的知识蒸馏版本
- 5.3 TinyBERT 模型简介
- 5.4 将知识从 BERT 模型迁移到神经网络中
- 5.5 小结
- 5.6 习题
- 5.7 深入阅读
第三部分 BERT 模型的应用
第 6 章 用于文本摘要任务的BERTSUM 模型
- 6.1 文本摘要任务
- 6.2 为文本摘要任务微调 BERT 模型
- 6.3 理解 ROUGE 评估指标
- 6.4 BERTSUM 模型的性能
- 6.5 训练 BERTSUM 模型
- 6.6 小结
- 6.7 习题
- 6.8 深入阅读
第 7 章 将 BERT 模型应用于其他语言
- 7.1 理解多语言 BERT 模型
- 7.2 M-BERT 模型的多语言表现
- 7.3 跨语言模型
- 7.4 理解 XLM-R 模型
- 7.5 特定语言的 BERT 模型
- 7.6 小结
- 7.7 习题
- 7.8 深入阅读
第 8 章 Sentence-BERT 模型和特定领域的 BERT 模型
- 8.1 用 Sentence-BERT 模型生成句子特征
- 8.2 sentence-transformers 库
- 8.3 通过知识蒸馏迁移多语言嵌入
- 8.4 特定领域的 BERT 模型:ClinicalBERT 模型和BioBERT 模型
- 8.5 小结
- 8.6 习题
- 8.7 深入阅读
第 9 章 VideoBERT 模型和BART 模型
- 9.1 VideoBERT 模型学习语言及视频特征
- 9.2 了解 BART 模型
- 9.3 探讨 BERT 库
- 9.4 小结
- 9.5 习题
- 9.6 深入阅读
习题参考答案
朋友们如果需要此本 《BERT基础教程:Transformer大模型实战》,扫码获取~
本文转自 https://blog.csdn.net/pythonhy/article/details/140936831?spm=1001.2014.3001.5501,如有侵权,请联系删除。