首先是多模态(MultiModal)
多模态是指能够同时处理多种类型数据(如文本、图像、音频等)的机器学习模型,它打破了传统单一模态数据的限制,使得AI系统能够更加全面、准确地理解人类信息。
大语言模型(LLM)是一种单一模态模型,它主要处理文本数据。比如语音对话应用在没有多模态能力的情况下,工作流程是:
-
首先接收用户的语音输入
-
其次利用语音转文字技术(STT)将语音转为文本
-
再用大语言模型处理并生成回复文
-
最后通过文本转语音技术(TTS)与用户进行语音对话
而多模态技术,可以直接将语音作为数据进行训练,也会直接生成语音,省去了所谓的语音转文字、文字转语音的过程。
多模态技术直接处理多类型数据并且可以用一个模型处理,这种方法更接近人类的感知和交互方式,它减少了在转换过程中可能丢失的信息,例如语调和情感。
延伸了解:
台大李宏毅教授讲得好,为什么需要“语音直接到语音”,因为有些语言是只有语音没有文字的。所以他们的语音无法转为文字。
智能体(Agent)
智能体是指能够感知环境并自主采取行动以实现特定目标的实体。它具有自主性、反应性、主动性,可以是软件程序或物理机器人。
智能体可以根据环境状态自主决策并执行动作,以完成复杂的任务。例如,一个智能体是你的个人助理,它不仅能够理解你的指令,还能够独立完成任务,如设定闹钟或根据你的身体情况预约医生。
智能体最早由麻省理工学院AI实验室创始人Marvin Minsky于1986年在《思维的社会》一书中提出。它最近曝火要归功于OpenAI提出的Agent基本框架图,即Agent由记忆,规划,工具,行动,四个模块组成。在大模型时代,为了和以往的概念相区别,更严谨的说法应该称之为AI Agent。
具身智能**(Embodied AI)**
具身智能是指基于物理身体进行感知和行动的智能系统。具身智能系统通常由本体(物理实体)和智能体(智能核心)组成,能够在复杂环境中执行任务。
可以想象成一个能够自由移动并完成任务的机器人,它不仅能听懂用户的指令,比如“请把地上的衣服捡起来放到洗衣机里”,还能实际行动起来真的把衣服放到洗衣机里。
扫地机器人是具身智能初步阶段的一个应用。
可以说,大语言模型和多模态只能构建一个《Her》,而具身智能的目标是构建一个“阿拉蕾”。
训练大语言模型需要海量的数据,如果这是通往智能的必经之路,那么训练具身智能也需要海量数据,但难度在于没有这样的数据。
网上有海量的文本、图像、音视频数据,但训练具身智能的数据需要是“我的胳膊转动了30度抓住这件衣服,转动了45度把衣服放进了洗衣机”。具体可以参考这篇文章https://zhuanlan.zhihu.com/p/706749901
通用人工智能(AGI)
AGI是指具有人类水平智能的AI,它能够在各种智力任务中表现出类似人类的灵活性和适应性。它不限定领域,而是能够在广泛的领域中学习和应用知识。AGI是对智能体能力的一种理想化追求。
总结一下,这几个概念的区别主要是:
-
大语言模型: 主要关注语言理解和生成,它是一个信息处理和知识输出的系统。
-
多模态: 更进一步能够处理和理解多种类型的数据,如文本、图像、音频和视频等。
-
智能体: 是一个能够根据感知做出决策并采取行动的实体,它可以是软件或硬件。
-
具身智能: 是智能体的一个子集,特指那些具有物理形态、能够与物理世界互动的实体。
-
AGI: 是一个广泛概念,指的是能够在广泛领域内执行任何智能任务的AI,代表着人工智能的终极目标。
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。