什么是多模态、智能体、具身智能、AGI,搞清楚它们的区别

首先是多模态(MultiModal

多模态是指能够同时处理多种类型数据(如文本、图像、音频等)的机器学习模型,它打破了传统单一模态数据的限制,使得AI系统能够更加全面、准确地理解人类信息。

大语言模型(LLM)是一种单一模态模型,它主要处理文本数据。比如语音对话应用在没有多模态能力的情况下,工作流程是:

  1. 首先接收用户的语音输入

  2. 其次利用语音转文字技术(STT)将语音转为文本

  3. 再用大语言模型处理并生成回复文

  4. 最后通过文本转语音技术(TTS)与用户进行语音对话

而多模态技术,可以直接将语音作为数据进行训练,也会直接生成语音,省去了所谓的语音转文字、文字转语音的过程。

多模态技术直接处理多类型数据并且可以用一个模型处理,这种方法更接近人类的感知和交互方式,它减少了在转换过程中可能丢失的信息,例如语调和情感。

延伸了解:

台大李宏毅教授讲得好,为什么需要“语音直接到语音”,因为有些语言是只有语音没有文字的。所以他们的语音无法转为文字。

智能体(Agent

智能体是指能够感知环境并自主采取行动以实现特定目标的实体。它具有自主性、反应性、主动性,可以是软件程序或物理机器人。

智能体可以根据环境状态自主决策并执行动作,以完成复杂的任务。例如,一个智能体是你的个人助理,它不仅能够理解你的指令,还能够独立完成任务,如设定闹钟或根据你的身体情况预约医生。

智能体最早由麻省理工学院AI实验室创始人Marvin Minsky于1986年在《思维的社会》一书中提出。它最近曝火要归功于OpenAI提出的Agent基本框架图,即Agent由记忆,规划,工具,行动,四个模块组成。在大模型时代,为了和以往的概念相区别,更严谨的说法应该称之为AI Agent。

具身智能**(Embodied AI)**

具身智能是指基于物理身体进行感知和行动的智能系统。具身智能系统通常由本体(物理实体)和智能体(智能核心)组成,能够在复杂环境中执行任务。

可以想象成一个能够自由移动并完成任务的机器人,它不仅能听懂用户的指令,比如“请把地上的衣服捡起来放到洗衣机里”,还能实际行动起来真的把衣服放到洗衣机里。

扫地机器人是具身智能初步阶段的一个应用。

可以说,大语言模型和多模态只能构建一个《Her》,而具身智能的目标是构建一个“阿拉蕾”。

训练大语言模型需要海量的数据,如果这是通往智能的必经之路,那么训练具身智能也需要海量数据,但难度在于没有这样的数据。

网上有海量的文本、图像、音视频数据,但训练具身智能的数据需要是“我的胳膊转动了30度抓住这件衣服,转动了45度把衣服放进了洗衣机”。具体可以参考这篇文章https://zhuanlan.zhihu.com/p/706749901

通用人工智能(AGI)

AGI是指具有人类水平智能的AI,它能够在各种智力任务中表现出类似人类的灵活性和适应性。它不限定领域,而是能够在广泛的领域中学习和应用知识。AGI是对智能体能力的一种理想化追求。

总结一下,这几个概念的区别主要是:

  • 大语言模型: 主要关注语言理解和生成,它是一个信息处理和知识输出的系统。

  • 多模态: 更进一步能够处理和理解多种类型的数据,如文本、图像、音频和视频等。

  • 智能体: 是一个能够根据感知做出决策并采取行动的实体,它可以是软件或硬件。

  • 具身智能: 是智能体的一个子集,特指那些具有物理形态、能够与物理世界互动的实体。

  • AGI: 是一个广泛概念,指的是能够在广泛领域内执行任何智能任务的AI,代表着人工智能的终极目标。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

<think>嗯,用户想了解如何构建一个多模态智能体。首先,我需要明确多模态智能体的定义,它应该能处理多种输入数据,比如文本、图像、音频等。接下来,我得回忆相关的技术步骤。可能需要从数据准备开始,因为多模态模型需要大量的多类型数据。然后是模型架构的选择,比如使用Transformer或者混合模型。不过具体怎么整合不同模态的数据呢?可能需要编码器来处理每种模态,再融合特征。 然后,用户可能需要知道训练过程,包括预训练和微调。跨模态对齐也很重要,比如CLIP那样的方法。评估部分,得考虑不同任务下的性能指标。部署和应用场景也是关键,比如客服、医疗等。不过有没有可能遗漏某些步骤?比如数据预处理的具体方法,或者如何处理不同模态之间的同步问题?另外,模型优化和计算资源的需求也需要提到,毕竟多模态模型通常较大。最后要确保使用正确的中文术语,避免翻译错误。可能还需要分步骤详细说明,确保结构清晰,用户能逐步理解。</think>构建多模态智能体需要系统性融合不同模态数据的处理能力,以下是分步骤技术解析: **1. 目标定义与场景拆解** - 明确核心任务(如跨模态检索、多模态推理) - 确定输入/输出模态组合(文本+图像→文本、语音+视频→决策等) - 例如医疗诊断场景:$$Input = \{CT图像X, 化验报告Y\}, Output = 诊断结论Z$$ **2. 多模态数据工程** - **数据采集**:建立异构数据仓库,满足: - 模态对齐(时间同步的语音+唇动视频) - 标注统一(图像区域与文本描述的像素级关联) - **预处理**: - 文本:BERT分词+位置编码 - 图像:CNN特征提取+空间位置编码 - 音频:MFCC特征+时间序列编码 **3. 模型架构设计(以Transformer为例)** ```python class MultimodalTransformer(nn.Module): def __init__(self): super().__init__() self.text_encoder = BertModel.from_pretrained('bert-base') # 文本编码 self.image_encoder = ViTModel.from_pretrained('google/vit-base') # 图像编码 self.fusion_layer = CrossModalAttention(dim=768) # 跨模态注意力 self.decoder = TransformerDecoder(n_layer=6) # 任务特定解码 ``` **4. 跨模态对齐训练** - 采用对比学习目标: $$L_{CL} = -\log\frac{\exp(sim(f_t,f_i)/\tau)}{\sum_{j=1}^N \exp(sim(f_t,f_j)/\tau)}$$ 其中$f_t$为文本特征,$f_i$为匹配图像特征,$\tau$为温度参数 **5. 联合优化策略** - 渐进式训练步骤: 1. 单模态预训练(冻结编码器) 2. 跨模态微调(解冻顶层+适配器) 3. 任务特定训练(添加分类头/生成头) **6. 评估体系构建** - 建立三维评估矩阵: | 维度 | 指标 | 工具 | |-------------|-------------------------------|-----------------------| | 模态理解 | BLEU-4(文本), mAP(图像) | COCO Evaluation | | 模态交互 | 跨模态检索Recall@K | Flickr30K Benchmark | | 任务性能 | 准确率/ROUGE-L | GLUE/MMLU | **7. 部署优化关键技术** - 模态异步处理:$$t_{total} = \max(t_{text}, t_{image}) + t_{fusion}$$ - 动态模态路由:使用门控网络$G(X) = \sigma(W_g \cdot [f_t; f_i])$控制信息流 **当前技术挑战** - 模态缺失鲁棒性:当输入缺失语音数据时,如何保持性能稳定 - 语义鸿沟度量:开发更准确的跨模态相似度计算模型 - 能耗优化:多模态模型的$FLOPs$通常比单模态高2-3个数量级 最新进展显示,通过混合专家(MoE)架构可提升效率,如Google的Pathways系统实现: $$Throughput = \frac{\sum_{m=1}^M E_m}{\max_{m}(C_m)}$$ 其中$E_m$为各模态专家处理速度,$C_m$为通信开销
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值