目录
1、代码简介
[独家]基于PCA-PSO-SVM的数据多特征分类预测 Matlab代码(多输入单输出)[可显示原始特征对应的贡献率]
程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!
1.首先通过主成分分析PCA将数据进行降维,会显示原始特征对应的贡献率(不是贡献率排序,不会让你对应不到对应特征),特征选取要求为累计贡献率大于90%。
2.将数据降维后的数据导入PSO-SVM神经网络进行分类预测(PSO优化SVM的c和g)
3.PCA和PSO-SVM分类两个内容写在同一个main里,运行一个main一键出图和结果(如下图)
4.SVM可定制更换为其他模型BP、RF、RBF、LSSVM、CNN、LSTM等以及组合模型也可以!
5.PSO算法可以定制更换为其他算法。
注:
1、运行环境要求MATLAB版本为2018b及其以上,可实现二分类和多分类
2、代码中文注释清晰,质量极高
3、运行结果图包括分类效果图,迭代优化图,混淆矩阵图,如下所示
4、赠送测试数据集,可以直接运行源程序。 适合新手小白
2、代码运行结果展示
降维结果
预测结果
3、代码获取
点击下方了解更多!