什么是端到端(end to end)大模型,它和传统的大模型有什么区别?其优势与劣势是什么?

端到端模型,是一个直接由输入获取输出的过程

最近有一个很火的关于人工智能模型的词——端到端模型。

那么什么是端到端模型?为什么会提出端到端模型,以及它解决了哪些问题?‍‍‍‍‍‍‍‍‍‍

今天我们就来一起了解一下这个端到端模型。‍‍‍‍‍‍‍‍‍‍‍

端到端模型

还记得计算机组成原理里面,关于冯诺伊曼计算机结构中,组成计算机的几个模块吗?

运算器 控制器 存储器 输入设备和输出设备,由这五大模块组成了现有的计算机系统。‍‍

而对我们使用者来说,这五大模块中我们接触最多的就是输入设备与输出设备,也就是鼠标键盘显示器。‍‍‍‍‍‍‍‍‍‍‍‍‍

而运算器,控制器和存储器是由计算机系统自己处理的,我们不需要知道它们的内部运行原理,也不需要知道它们是怎么协调的。‍‍‍‍‍‍‍

同样端到端也是如此,从表象来看我们只需要关心其输入与输出,不需要知道它的内部结构,也就是说,端到端模型的表象是一个黑盒。

我们知道,大模型的表现是无法解释的,它更多的是一种现象,叫做智能涌现,现在很多研究机构都在解决大模型的可解释性,也就是大模型为什么能做到这样的效果,中间经历了哪些处理。

但如果要实现一个端到端的大模型,应该怎么实现呢?任何新技术的出现都是为了解决存在的问题,那端到端模型解决了什么问题? ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

其实用一句话概括端到端,就是让大模型直接理解问题,然后给出答案或决策。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

比如拿语音模型举例,很多人以为的语音模型就是直接理解语音,但事实上语音模型并不是直接理解语音;而是由多个模块组成的一个语音模型。‍‍‍‍‍‍‍‍‍‍‍‍‍

语音在语音模型中的处理过程,需要经过语音转文字,然后把文字输入给大模型,大模型处理完毕返回文字,再有转化系统把文字转换为语音返回给用户。‍‍‍‍‍‍‍‍‍‍‍

这就是现在大模型所存在的问题,中间需要经过多个模块的协同处理才能得到想要的结果。可能有人会问为什么不让大模型直接理解语音,还要经过中间的转化?‍

原因就是这样的实现方式技术难度低,容易实现。‍‍‍‍‍‍‍‍

而端到端模型的目的就是省略中间语音转文字,文字转语音的过程;为什么要这么做?‍

这么做的目的并不是为了炫耀技术,而是有些场景需要强大的实时性,无法接受如此长链条的处理响应时间。‍‍‍‍

比如说自动驾驶,现今的自动驾驶采用的就是多模块协作的方式,如路况采集,自动化分析,做出决策,执行决策等。这样的自动驾驶系统就需要大量的时间做出响应。‍‍‍‍‍

而如果采用端到端系统,那么端到端系统就可以直接采集路况数据,然后做出决策,省略中间各种乱七八糟的处理流程,大大提升了系统灵敏度。‍‍‍‍‍

从技术到角度来说,端到端模型实现难度更大,系统更复杂,而且可解释性更差,而且更像一个黑盒。‍‍‍‍‍‍

可能说到这里,有些人任务端到端模型能做到的事,普通大模型也可以做到,而且技术难度更低,成本也更低。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

但端到端模型出现的原因并不是为了解决普通的问题,比如回答系统;哪怕你普通大模型性能低一点,回答慢一点也可以接受。‍‍‍‍‍‍‍

但在一些领域,如智能驾驶,高端制造,军事竞争等方面,延迟要在毫秒,甚至是微秒的程度;这时普通大模型就无法完成任务了。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

端到端模型的主要目的就是为了让大模型直接接受输入,减少中间环节的处理成本,提升效率。

程序员应该比较容易理解端到端,普通大模型就类似于现在的高级语音,如java,python等;它们的功能强大,但执行效率低,原因就是中间有一个解释器。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而端到端模型就类似于C语言,直接转换为计算机能够处理的格式,省略了中间解释的环节。‍‍‍‍‍‍‍‍

虽然高级编程语言的作用越发强大,但永远也没有那个语言能完全取代C语言和汇编语言。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

当然,C语言和汇编语言虽然效率高,但迁移性比较低,不同的平台需要不同的指令集和开发库。端到端模型也是如此,对训练数据质量的要求更高,适应性也更差。‍‍‍‍‍‍‍‍‍‍‍‍‍

因此,网上也有人说,所谓的端到端就是直接由输入得到输出,大模型可以直接理解输入数据,而不需要这样那样的转化过程。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### 端到端自动驾驶大模型中的“端到端”概念解释 #### 定义特点 在自动驾驶领域,“端到端”的核心在于将传感器数据直接映射至车辆控制指令,形成一个完整的闭环系统。这种架构允许从原始输入(如摄像头图像、雷达信号等)直接生成最终输出(转向角度、加速度等),而无需显式的中间表示或分阶段处理[^1]。 #### 结构优势 相比于传统模块化设计方法,“端到端”方式具有显著的优势: - **简化流程**:减少了多个独立组件之间的复杂交互; - **全局优化**:可以在整个系统层面进行联合调优,而不是针对单个部分分别调整; - **增强鲁棒性**:通过学习整体行为模式而非孤立特征,提高了应对未知情况的能力[^2]。 然而值得注意的是,“端到端”并不意味着必须依赖大规模预训练模型。“端到端”更多是指结构上保持梯度传导的一致性支持全局范围内的最优化求解路径。 #### 应用实例 具体来说,在实际应用中,“端到端”框架能够实现实时环境感知、场景理解行动预测等功能于一体。例如,最新提出的UniAD就是一个典型的例子,它不仅涵盖了从视觉信息获取到决策制定全过程,而且还特别强调了对周围物体位置关系的理解以及对未来行驶路线的推测能力。 ```python def end_to_end_autonomous_driving(input_data): """ Simulate an end-to-end autonomous driving model. Args: input_data (list): Raw sensor inputs like camera images, LiDAR points etc. Returns: tuple: Control commands including steering angle and acceleration value. """ perception_output = perceive_environment(input_data) scene_description = describe_scene(perception_output) future_actions = predict_future(scene_description) return generate_control_commands(future_actions) if __name__ == "__main__": raw_sensors_input = ["camera_image", "lidar_points"] control_signals = end_to_end_autonomous_driving(raw_sensors_input) print(control_signals) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值