AI进化之路:解读大模型技术的四大技术架构

随着人工智能技术的不断发展,大模型技术架构也在不断演进和完善。在这篇文章中,我们将深入探讨四种主要的大模型技术架构:纯Prompt、Agent + Function Calling、RAG(检索增强生成)和Fine-Tuning。每一种架构都有其独特的特点和应用场景,让我们一一了解它们。

1. 纯Prompt:模拟对话的简单交互

图片

纯Prompt技术架构可以看作是最原始、最直观的AI交互方式。它就像与一个人对话,你说一句,AI回应一句,你再继续说,AI再继续回应。这种交互方式的优点在于简单直接,不需要复杂的设置和调用。

应用场景: 当你问AI一个问题,比如“过年去哪玩”,AI会根据你的问题直接给出一个答案。这种方式适用于简单的对话场景,但在处理复杂任务时可能显得力不从心。

2. Agent + Function Calling:主动提问与功能调用

图片

在Agent + Function Calling架构中,AI不仅能够被动回答问题,还可以主动提问以获取更多信息,并通过功能调用来完成特定任务。例如,你问AI“过年去哪玩”,AI可能会先反问你有几天假期,通过了解更多背景信息来提供更准确的建议。

应用场景: 这种架构适用于需要多轮交互和功能执行的复杂场景,比如智能家居控制、客户服务等。AI不仅能够理解用户需求,还能主动引导对话和调用具体功能来解决问题。

3. RAG(检索增强生成):结合向量数据库进行检索

图片

RAG架构结合了Embeddings和向量数据库技术。Embeddings是将文字转换为便于相似度计算的向量编码,这些向量存储在向量数据库中,以便于快速查找。当接收到一个输入时,AI会根据输入向量在数据库中找到最相似的向量,从而提供相关信息。

应用场景: 例如在考试时,看到一道题目,可以通过RAG架构在相关资料中找到对应的内容,并结合题目生成答案。这种方法能够显著提高信息检索的效率和准确性。

4. Fine-Tuning:深入学习与长期记忆

图片

Fine-Tuning是一种对大模型进行微调的技术,通过针对特定任务或领域进行进一步训练,使模型能够长期记住并活学活用这些知识。与前面提到的方法不同,Fine-Tuning能够使AI在特定领域表现得更加专业和准确。

应用场景: 这种技术适用于需要高准确度和专业知识的领域,如医学诊断、法律咨询等。通过Fine-Tuning,AI可以提供更加专业、可靠的建议和服务。

总结

大模型技术架构从纯Prompt的简单对话,到Agent + Function Calling的主动交互,再到RAG的高效检索,最终到Fine-Tuning的深入学习,每一种架构都有其独特的优势和应用场景。理解这些技术架构的特点和适用范围,有助于我们更好地利用人工智能技术来解决实际问题,提升工作和生活的效率。

希望通过这篇文章,你能对大模型技术架构有一个更清晰的认识,并在未来的工作和学习中灵活应用这些技术,让AI成为你的得力助手。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文转自 https://blog.csdn.net/python12345_/article/details/140964012?spm=1001.2014.3001.5501,如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值