AI演进之道:剖析大模型技术的四大核心架构

▼最近直播超级多,预约保你有收获

cb6198155ed000018dfd6b2e910496e0.png

随着 AI 大模型技术的持续进步,大模型的技术框架经历了不断优化与革新。本文我们将细致解析四种关键的大模型技术结构:纯粹 Pompt 提示词法、Agent + Function Calling 机制、RAG(检索增强生成)以及 Fine-tuning 微调技术。每种架构各具特色,适用于不同的场景,接下来将逐一剖析它们的特性和应用场景。

 1

纯 Prompt:构建对话的直观交互模式

当用户输入一个 Prompt 查询时,该查询会被发送到路由转发模块,而路由转发模块则扮演着对输入 Prompt 进行分类的角色。

纯 Prompt 提示词架构可视为 AI 大模型交互的最初步、最直接形式。它模仿了人与人交谈的过程:你提出一个问题或发表一句评论,AI 大模型即刻响应,继而对话延续。该方法的优点在于其简洁明了,无需高级配置或特殊调用过程。

8fa241cb1dec328d274ffe132cc9066d.png

应用场景:若向 AI 大模型询问“端午节去哪里旅游?”,AI 大模型能即刻给出回复。这种模式适合处理简易的对话情境,但对于复杂任务则可能显现其局限性。

2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值