Qwen3真香!不愧为目前最强开源模型!(附本地部署教程)

五一假期眼看就结束了,咱也得抓紧时间卷一下子。 

这不,节前,阿里发布了全新一代模型Qwen3。

开源大模型新的王者,继Claude 3.7 Sonnet、Gemini 2.5家族后全球唯三的混合推理模型,也是国内首款“混合推理模型”,正式发布。

特别是,旗舰型号Qwen3-235B-A22B(2350亿总参数,220亿激活参数)表现炸裂!在代码、数学、通用能力等测试中,它完全不输于DeepSeek-R1、o1、o3-mini、Grok-3、Gemini-2.5-Pro这些顶尖模型。

本次发布了哪些内容

Qwen3这次推出了两大系列模型:Dense模型(常见的GPT风格)和MoE模型(混合专家模型,效率更高)。 

说重点,本次一次性发布了8款混合推理模型!

特点

  1. 多语言支持:支持119种语言和方言,覆盖印欧语系、亚非语系、汉藏语系(简中、繁中、粤语、缅甸语)等等,上面开会说要援助全球南方国家,阿里这是积极响应呀!妥妥的亚非拉的“好兄弟”

  2. 混合推理模式:快思考(低延迟响应)与慢思考(多步推理)灵活切换,支持用户控制推理深度。

  3. 显著降低幻觉率:预训练数据量达36万亿token,四阶段后训练流程(含强化学习),显著降低幻觉率至业界头部水平。

  4. 全系列开源:全系列基于Apache 2.0协议开源,支持商业化和二次开发

  5. 多模态能力强大:部分版本支持统一多模态编码技术,可处理文本、图像、音频等多模态输入。

  6. MoE架构优势:通过动态激活参数(如235B-A22B仅激活220亿参数),平衡性能与计算资源消耗,显存占用仅为同类密集模型的1/3。

  7. 部署灵活:支持多种框架(如SGLang、vLLM)、本地工具(Ollama、LMStudio)及云端API,适配不同硬件平台。

我觉得,这就是目前全球最强的开源模型,来自阿里。

Qwen3——更灵活的混合推理模型

混合推理模型(Hybrid Reasoning Model)是一种结合两种或多种推理策略的AI架构,通过动态切换不同模式来平衡效率深度,解决单一模式难以兼顾简单任务高速响应和复杂任务精准求解的矛盾。 

简单说,就是同时支持两种思考模式:

  1. 像ChatGPT-4一样直接回答

  2. 像DeepSeek-R1一样:先思考,后回答

举个例子:

     快思考(System 1):类似直觉反应 

  • 特点:快速、低耗能、无需深度分析 

  • 场景:天气查询、短对话回复 

  • 例:当用户问"1+1=?"时,模型瞬间给出答案

    慢思考(System 2):类似深度分析 

  • 特点:多步骤推理、高精度、资源消耗大 

  • 场景:数学证明、代码调试 

  • 例:解决"求三次方程x³-2x+1=0的实数根"需要分步推导

事实上,不是用户的所有问题都需要调动巨量的资源来进行思考的,这既浪费资源,又占用时间。 

混合推理最早是Claude推出的,但Claude要求用户手动选择模式,体验不够流畅。

而Qwen3更进一步,直接支持在提示词中指定是否思考,随心切换,真正做到了用户体验至上! 

我们可以有两种方式:

  1. 我们可以在提示词中说明“请不要思考”:这样,即使在思考模式下,模型也会立刻切换到直接回答模式。

  2. 手动选择是否开启【深度思考】,并且可以拉动控制条来控制思考的长度,0就是不需要思考,直接回答。

本地部署

既然一次性发布了从超小模型到旗舰模型的8款全家桶产品,那肯定是支持我们部署到本地的。 

Qwen3发布后,Ollama第一时间支持了本地部署,8B的模型仅需5.2G空间就能运行。 

哈哈哈,那我手上这台普通笔记本电脑也可以发挥一下子了,这下终于可以实现随时随地的AI自由了! 

因为全系列基于Apache 2.0协议开源,支持商业化和二次开发。 

所以,所有公司无论规模大小,所有AI开发者、科研机构不惧显卡门槛,大家都能够用得上、也用得起千问3模型。

从应用角度看,Qwen3提供了全谱系的选择:

  • Qwen3-0.6B:完美适合手机部署

  • Qwen3-4B、8B:适合个人PC使用

  • Qwen3-14B、32B:适合企业本地化部署

  • 更大的模型:适合云端部署使用

我简单做了个表:

设备适配建议

  • 个人开发者/学生:8B以下模型 + 16GB内存笔记本(无需独立GPU)

  • 中小型企业:30B模型 + RTX 4090单卡(支持长文档处理)

  • 科研机构/大型企业:235B模型 + 多卡服务器(需动态量化优化)

具体型号的部署命令或量化参数调整,可参考Ollama官方文档或Qwen3的Hugging Face页面: 

Hugging Face: 

https://huggingface.co/spaces/Qwen/Qwen3-Demo 

ModelScope: 

https://www.modelscope.cn/collections/Qwen3-9743180bdc6b48 

GitHub: 

https://github.com/QwenLM/Qwen3

直接喂饭: 安装ollama,然后ollama下载模型即可,开联网问一下deepseek,你就知道怎么部署了。

当然,如果使用需求没那么多的话,也可以直接在Qwen Chat官网体验。 

网址:https://chat.qwen.ai 

进去后,左上角选择“Qwen3”系列模型,即可体验。

写在最后

Qwen模型进化的成绩确实令人自豪,稳坐第一梯队。

但我觉得此次更重要的意义有三个:

  • 支持119种语言,把没有大模型开发能力的国家和地区也带上了,支持了人类社会共同进步,也用实际行动响应了GJ战略。

  • 全家桶全开源,让个人用户和中小企业能自主部署、自主开发并商用。

  • 进一步优化了混合推理模型,让技术落地于实际应用,而不只是单纯的刷参数,让科技真正的为生产做服务,同时大大减少资源消耗和浪费。

毫无疑问,这波Qwen3赢麻了。

不愧是阿里。

依然值得信赖。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### 关于面包板电源模块 MB102 的 USB 供电规格及兼容性 #### 1. **MB102 基本功能** 面包板电源模块 MB102 是一种常见的实验工具,主要用于为基于面包板的小型电子项目提供稳定的电压输出。它通常具有两路独立的稳压输出:一路为 5V 和另一路可调电压(一般范围为 3V 至 12V)。这种设计使得它可以满足多种芯片和传感器的不同工作电压需求。 #### 2. **USB 供电方式** MB102 支持通过 USB 接口供电,输入电压通常是标准的 5V DC[^1]。由于其内部集成了 LM7805 稳压器以及可调节电位器控制的直流-直流变换电路,因此即使输入来自电脑或其他低功率 USB 设备,也能稳定地向负载供应电力。不过需要注意的是,如果项目的功耗较高,则可能超出某些 USB 端口的最大电流能力(一般是 500mA),从而引起不稳定现象或者保护机制启动断开连接的情况发生。 #### 3. **兼容性分析** 该型号广泛适用于各种微控制器单元 (MCU),特别是那些像 Wemos D1 R32 这样可以通过杜邦线轻松接入并共享相同逻辑级别的系统[^2]。另外,在提到 Arduino Uno 板时也表明了良好的互操作性,因为两者均采用相似的标准接口定义与电气特性参数设置[^4]: - 对于需要 3.3V 工作环境下的组件来说,只需调整好对应跳线帽位置即可实现精准匹配; - 当涉及到更多外围扩展应用场合下,例如带有多重模拟信号采集任务的情形里,利用 MB102 提供干净无干扰的基础能源供给就显得尤为重要了[^3]。 综上所述,对于打算构建以单片机为核心的原型验证平台而言,选用具备良好声誉记录且易于获取配件支持服务链路上下游资源丰富的品牌产品——如这里讨论过的这款特定类型的配电装置不失为明智之举之一。 ```python # 示例 Python 代码展示如何检测硬件状态 import machine pin = machine.Pin(2, machine.Pin.IN) if pin.value() == 1: print("Power supply is stable.") else: print("Check your connections and power source.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值