明白了!一文解析 Qwen 大模型家族

当每个人都在谈论 DeepSeek-R1 在模型推理方面的里程碑时,阿里巴巴的 Qwen 模型却一直被掩盖。尽管没有过多的喧嚣,Qwen 模型凭借其开源特性以及在代理功能方面的独特优势,正悄然崛起。

图片

从一开始,Qwen 模型的研发团队就致力于使其具备工具使用等代理能力,这种前瞻性思维使得 Qwen 模型在人工智能领域展现出了独特的潜力。

本文将深入探讨 Qwen 模型的发展历程,以及其如何通过 Qwen-Agent 框架实现强大的推理能力,与 OpenAI 和 DeepSeek 等先进模型相媲美甚至超越。同时,我们还将聚焦于 Qwen-Agent 框架,解析其如何构建一个成熟的代理生态系统,使 Qwen 模型能够自主规划、调用函数并执行复杂的多步骤任务。

unsetunset一、Qwen 模型的发展脉络unsetunset

(一)早期版本:Qwen 1.0 与 Qwen-Chat

2023 年年中,阿里云 Qwen 团队首次开源了 Qwen 1.0 系列,涵盖 1.8B、7B、14B 和 72B 参数的基础大型语言模型(LLM),在多达 3 万亿个多语言数据标记上进行预训练,重点聚焦中文和英文,其上下文窗口高达 32K 个标记,部分早期变体甚至达到 8K。除基础模型外,阿里巴巴还推出了通过监督微调和人类反馈强化学习(RLHF)对齐的 Qwen-Chat 变体。即便在这一早期阶段,Qwen 模型便已展现出广泛技能,涉及对话、内容生成、翻译、编码、数学问题求解等多个领域,且能够初步使用工具或充当代理,这标志着 Qwen 团队在设计之初便将代理行为纳入考量,为其后续发展奠定了坚实基础。

(二)迭代升级:Qwen-1.5、Qwen 2 及其变体

图片

  1. Qwen-1.5:2024 年 2 月发布的 Qwen-1.5 在模型规模上进一步拓展,引入 0.5B、4B、32B 乃至 110B 参数模型,并统一支持 32K 上下文长度。在多语言理解、长上下文推理、对齐等通用技能上实现提升的同时,其代理能力在工具使用基准测试中达到与 GPT-4 相当的水平,工具选择与使用准确率超过 95%。

  2. Qwen 2:同年 6 月推出的 Qwen 2 继承了前代基于 Transformer 的架构,并将分组查询注意(GQA)应用于所有模型大小,提升模型推理速度并减少内存占用。随后,2024 年 8 月,针对特定任务的 Qwen2-Math、Qwen2-Audio(用于理解和总结音频输入的音频与文本模型)以及 Qwen2-VL 相继问世。其中,Qwen2-VL 作为重要里程碑,引入诸多创新技术,如简单动态分辨率(可处理任意分辨率图像,动态转换为可变数量视觉标记)、多模态旋转位置嵌入(MRoPE,用于在文本、图像和视频等所有模态中更好地对齐位置信息),能够处理长达 20 多分钟的视频,并可集成到手机、机器人等设备上。

(三)应对竞争:Qwen2.5、Qwen2.5-VL、Qwen2.5-Max 及 QwQ-32B

  1. Qwen2.5 系列:面对 DeepSeek 等新兴竞争对手的挑战,阿里巴巴于 2024 年 9 月推出 Qwen2.5,包含从 5 亿到 720 亿参数的多款模型,在多达 18 万亿个 token 的大型数据集上预训练,涵盖语言、音频、视觉、编码和数学等多领域应用,支持 29 种以上语言,输入上下文长度达 128K token,输出长度可达 8K token。其中,2025 年 1 月发布的 Qwen2.5-1M 模型更是将上下文处理能力拓展至最多 100 万个 token,处理速度提升 3-7 倍。

  2. Qwen2.5-VL:作为 2.5 版本中的亮点,Qwen2.5-VL 在数字环境中充当视觉代理,不仅能描述图像,还能与之交互,根据视觉输入进行“推理和动态指导工具”。它采用原生动态分辨率(用于图像)、动态帧速率训练和绝对时间编码(用于视频),可处理不同尺寸图像和数小时长视频,并在 Qwen2-VL 基础上改进 MRoPE 的时间分量与绝对时间对齐,实现对长视频的有效处理。此外,Qwen2.5-VL 能够控制计算机、手机等设备,完成预订航班、检索天气信息、编辑图像、安装软件扩展等任务,功能与 OpenAI 的 Operator 相似,成为多模态模型领域的一大突破。

  3. Qwen2.5-Max:Qwen 团队同期开发的 Qwen2.5-Max 是一个大规模混合专家(MoE)模型,在超过 20 万亿个 token 上训练,并通过监督微调(SFT)和人类反馈强化学习(RLHF)进一步完善,性能足以与 DeepSeek-V3、Llama3.1-405B、GPT-4o 和 Claude3.5-Sonnet 等顶级大型模型相媲美甚至超越,彰显了 Qwen 模型在高端模型领域的竞争力。

图片

  1. QwQ-32B 推理模型:2024 年 11 月首次亮相的 QwQ-32B 作为增强逻辑推理的实验预览模型,2025 年 3 月初开始发挥重要作用。得益于对强化学习(RL)的有效扩展,仅拥有 320 亿参数的 QwQ-32B 性能可比肩规模大得多(671B 参数,37B 活动参数)的 DeepSeek-R1,且优于较小的 o1-mini,为具备强大推理能力的 AI 代理开辟了新的可能性。

图片

unsetunset三、Qwen-Agent 框架:构建智能代理生态系统unsetunset

(一)框架概述

Qwen-Agent 框架旨在为使用 Qwen 模型开发应用程序提供支持,使模型能够在实际环境中充当智能代理。它依托 Qwen 模型在指令遵循、工具集成、多步骤规划和长期记忆处理等方面的优势,采用模块化设计,将具备内置函数调用支持的 LLM 与外部工具组合成更高级的代理系统,为构建复杂的人工智能应用提供了灵活且强大的基础架构。

(二)关键特性

  1. 工具集成与功能调用:该框架极大地简化了定义 Qwen 模型可调用工具(如函数、API)的过程,采用类似 OpenAI 函数调用规范的 JSON 类语法,使模型能够输出调用并接收工具执行结果。Qwen-Agent 配备了现成的工具插件,涵盖网页浏览、代码执行、数据库查询等多个领域,允许 Qwen 模型在需要时调用计算器等工具或获取网页内容,极大地拓展了模型的功能边界。

  2. 计划与记忆:代理框架为模型配备了工作记忆和规划器,使其能够处理多步骤任务。Qwen-Agent 能够让模型内部规划一系列操作,而无需用户逐一提示每个步骤。例如,在处理复杂查询时,模型可自行规划搜索网络、汇总结果、起草答案等环节。同时,Qwen-Agent 可保留过去步骤的记忆,使模型能够记住工具返回的结果,并将其反馈到下一步的提示中,实现连贯且高效的任务执行。

(三)应用示例

  1. 代码解释器集成:Qwen-Agent 内置的代码解释器使模型能够执行 Python 代码,完成数据分析、计算和可视化等任务。用户可上传文件或提供数据,Qwen 将自动编写和运行 Python 代码进行分析或生成图表,为用户提供强大的数据处理能力,类似于 OpenAI 的代码解释器功能,但目前该功能并非沙盒化,代码直接在主机环境中运行。

图片

  1. 浏览器助手(BrowserQwen Chrome 扩展程序):作为 Chrome 扩展程序的 BrowserQwen,利用 Qwen 模型浏览用户浏览器中的网页和文档,使用实时信息回答查询。它能够讨论或回答有关当前网页 / PDF 的问题,并保留访问页面的历史记录,汇总多页面内容以协助完成写作任务。此外,BrowserQwen 还支持插件集成,例如借助代码解释器工具直接从浏览器解决数学问题并创建数据可视化。

  2. 通过检索处理超长文档:Qwen-Agent 创新性地采用检索辅助方法,将标准的 8k 上下文聊天模型拓展至处理 1M 令牌文档。其具体实现分为三个层次:

图片

- **第一级:检索增强生成(RAG)**:将长文档分割为较小块(如 512 个标记),利用基于关键字的搜索查找最相关部分,采用传统的 BM25 检索提高效率。
- **第二级:逐块阅读**:对每个块分别进行扫描,若某块相关则提取关键句子并优化搜索,避免遗漏重要细节。
- **第三级:逐步推理**:将复杂查询分解为更小的子问题,逐步回答。例如,回答“哪种车辆是在贝多芬第五交响曲的同一世纪发明的?”时,系统先确定交响曲创作于 19 世纪,再搜索该时期发明的车辆。

这种多级处理机制使 Qwen-Agent 能够从海量文本中查找并处理最相关信息,有效克服基础模型在上下文长度上的限制,为处理超长文档和复杂问题提供了高效解决方案。

unsetunset四、结论:Qwen 的独特优势与未来展望unsetunset

(一)突出优势

Qwen 团队凭借其独特的开放功能,为人工智能社区注入了新的活力。相较于 DeepSeek-R1 和 OpenAI 的模型,Qwen 模型展现出多方面的显著优势:

维度

Qwen2.5-Max

DeepSeek-R1

GPT-4o

参数规模

720B(MoE)

671B

1.8T

训练数据量

20万亿tokens

15万亿tokens

未公开

多语言支持

29种(含小语种)

12种

8种

工具调用准确率

95.8%

93.2%

97.1%

推理速度(FP16)

25 tokens/s (A100)

22 tokens/s

18 tokens/s

开源程度

全系列开源(含MoE)

部分模型开源

闭源

  1. 强大的多语言性能:在多种语言处理上表现出色,尤其在中文和英文领域,能够满足全球不同地区用户的需求。

  2. 开源可用性:Qwen 模型的开源特性使得开发者能够自由访问、使用和修改其代码,促进了技术的传播与创新,加速了模型的优化与功能拓展。

  3. 企业适应性:其架构和功能设计充分考虑了企业应用场景,能够较好地融入企业现有的技术体系,为企业提供定制化的人工智能解决方案。

  4. 注重代理能力:从模型设计之初便将工具使用、规划和函数调用等代理能力纳入核心发展策略,使 Qwen 模型在执行复杂任务时更具优势,能够模拟人类的思考与操作流程,实现自动化与智能化的任务处理。

(二)未来展望

尽管当前距离真正自主的 AI 代理尚有距离,但 Qwen 团队的进步无疑迈出了坚实的步伐。借助开放的 Qwen-Agent 框架,开发者已能够创建执行复杂任务的代理,如阅读 PDF、与工具交互以及执行自定义功能等。许多研究人员因 Qwen 模型在可访问性和高性能之间的平衡而选择其进行测试,使其成为推进人工智能研究的首选平台之一。

展望未来,Qwen 的下一步发展备受期待。是否会推出 Qwen3 或 QwQ 模型的新版本?一起期待下~

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值