行业首发《智能分析Agent 白皮书》,揭秘DeepSeek+Data Agent的决策新范式

在大模型开启新一轮AI浪潮席卷全球之际,企业正面临着前所未有的挑战与机遇。在数字化转型进程中,企业始终面临结构化数据分析深度不足、非结构化知识利用率低的核心痛点。近年来,大模型技术的突破性发展,特别是以DeepSeek为代表的低成本高性能智能体的出现,为"普惠化智能应用"目标提供了技术实现路径。企业智能化正从"数据智能分析"向" 决策自动化"阶段跨越,开创数字时代经营范式的新纪元。

在这样的背景下,数势科技推出了行业首个以“智能分析Agent”为侧重的白皮书《智能分析Agent如何驱动企业科学决策》。本白皮书将系统阐释智能分析Agent的核心概念、技术架构与应用价值,通过金融、零售等行业的实战案例,直观展现其赋能企业决策的变革性力量,并深度解析DeepSeek技术如何为Agent能力提供全维度支撑。" 

0

下面我们一起来看看这本白皮书的各章节讲了什么知识点。扫描以下二维码添加企业微信小助手,均可获得电子版白皮书!

第一章:全面认识智能分析Agent

本章将从智能分析 Agent 的概念、分类到其在 Al 领域的战略地位,全方位勾勒出一幅清晰的智能分析 Agent 生态图景。重点聚焦于智能分析 Agent 的定义与分类,深入探讨其在数据清洗、数据语义构建、数据分析等关键环节的核心作用,并通过全球智能分析Agent图谱,揭示行业内的主要玩家及其产品形态,为读者提供一份极具价值的行业指南。

0

简读:1.3 智能分析 Agent从工具到生态的范式跃迁

在近十年中国企业数字化转型中,BI系统曾为企业决策提供基础支持,但随着数据量与业务复杂度的增长,其弊端渐显:价值挖掘浅、用户体验差、分析模式被动,难以满足企业深度需求。大语言模型(LLM)的兴起带来新希望,但早期仅作为交互层优化,未深入重构分析逻辑。

0

如今,AI Agent架构的成熟标志着企业智能分析迈入新阶段。其核心是构建具备自主感知、决策与执行能力的智能体,实现三大突破:一是主动式洞察触发,如供应链中实时监测库存并自动优化;二是深度语义理解与推理,如零售行业构建动态定价模型;三是自动化决策闭环,从分析到行动全链路自动化。

关键洞察:智能分析 Agent 通过自然语言交互、主动洞察能力和决策闭环构建,突破传统 BI 局限,为企业提供精准、实时、可解释的决策支持,显著提升决策效率与质量。

第二章:企业智能分析Agent技术解读

本章全景式解析智能分析Agent的技术架构与产业生态。作为新一代决策工具,智能分析Agent通过自然语言交互、复杂任务自动化拆解和持续强化学习三大核心突破,重塑企业数据驱动模式。其技术分层架构整合多模态感知、业务语义理解与自动化执行,形成"数据-洞察-行动"闭环。

0

核心技术路线呈现三大分支:NL2Semantics适合追求分析深度与稳定性的企业级业务场景;NL2SQL更适配快速响应的SQL开发需求;NL2Code则为个人及小型团队提供灵活的数据处理方案。选择时需权衡实施成本、功能需求及数据规模,以实现技术价值与业务目标的最佳匹配。DeepSeek技术进一步赋能动态环境适应与自主决策能力,推动分析范式从被动响应转向主动决策。

0

第三章:代表性智能分析Agent产品及场景剖

这个章节将深度解析SwiftAgent智能分析Agent的产品价值与应用图景。

0

针对茶饮连锁加盟门店收益下滑的典型场景,SwiftAgent通过五大核心能力重塑决策模式:其一,基于DeepSeek大模型的自然语言交互技术,使非技术人员可通过对话快速获取数据可视化结果;其二,智能归因模型自动定位数据波动根源,加速问题诊断;其三,AI报告生成功能将洞见转化为结构化决策依据;其四,多端适配支持实时移动决策;其五,企业级指标语义层确保数据查询精准安全。

0

该产品已在企业决策、经营管理和业务运营中形成标准化解决方案。经营分析场景中,某零售企业通过整合多源数据实现商品组合优化与渠道策略调整,线上收入占比提升50%;金融领域应用则使贷款违约率下降30%。督导场景中,茶饮连锁利用智能巡店计划提升督导效率2倍,5%门店业绩获增长;智能审计系统通过实时风险评估降低合规成本等。

第四章:智能分析Agent的应用案例

该章节将结合上章节提到的业务场景进行深入剖析,给读者讲述智能分析Agent在零售、金融与差旅管理领域的落地实践。

0

茶饮连锁头部企业通过SwiftAgent赋能5000+门店运营,在月度经营分析场景中实现报告生成效率提升30倍(3天→1小时),AI归因模型精准定位区域业绩波动根源(如竞品密集开店),督导巡店体系通过移动端智能助手覆盖"目标设定-问题诊断-整改追踪"全流程,使督导人效提升数倍。

0

某城商行构建指标语义层与Agent架构,统一全行指标口径,将复杂风险评估耗时从数日压缩至分钟级,反问机制优化模糊查询准确率,自研加速引擎实现百亿级数据秒级响应。

0

差旅管理平台分贝通集成智能分析模块后,业务人员通过自然语言指令实时诊断机票超支问题(归因临时差旅占比65%),自动预警超标订单使审计周期缩短85%(14天→2小时),日均处理10万次查询,推动数据民主化转型。智能分析Agent通过"交互简化-洞察深化-行动自动化"三阶跃迁,正在重塑多行业决策链路,使数据真正成为一线人员的"决策伙伴"。

图片

最后,随着技术的持续进步,数据不再是被企业束之高阁的知识宝库,而是如水之就下般的四处蔓延至企业各个角落,中心化的数据孤岛散作各行各业的数据源泉。随着数据网络编织的逐渐完善,数据也完成了自身角色由量到质的转变,从最早的记录发生了什么,到洞悉事物背后的原因,再到为业务决策和行动提供指引,阶段式递进,数据要素逐渐成为企业的能源和血液。智能分析 Agent,正在企业界卷起一股数据普惠、科学决策的新趋势。

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### DeepSeek AI代理与Appium集成用于自动化测试 DeepSeek 是一种先进的大语言模型技术,能够通过其强大的自然语言处理能力来增强各种应用程序的功能。当涉及到将其与 Appium 集成时,主要目标是利用 DeepSeek 的智能特性来优化移动应用的自动化测试流程。 #### 1. **理解DeepSeek的作用** DeepSeek 可以被配置为一个智能代理,帮助生成更复杂的测试场景或者解析动态变化的应用界面。这种功能可以通过模拟真实用户的交互行为来提升测试覆盖率和效率[^1]。 #### 2. **设置环境准备** 为了实现两者的集成,首先需要安装必要的依赖库以及工具链。这通常包括 Python 或 Node.js 环境的支持,因为两者都支持这些编程语言作为接口开发的基础。 ```bash pip install appium-python-client deepseek-ai-agent selenium ``` 上述命令会安装 `appium` 客户端驱动程序以及其他可能需要用到的相关包。 #### 3. **编写脚本初始化连接** 创建一个的Python文件并导入所需的模块: ```python from appium import webdriver import deepseek_ai_agent as dsaa desired_caps = { 'platformName': 'Android', 'deviceName': 'emulator-5554', 'appPackage': 'com.example.app', 'appActivity': '.MainActivity' } driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) # 初始化DeepSeek Agent agent = dsaa.DeepSeekAgent(api_key="your_api_key_here") def perform_action(action_name, parameters): action_result = agent.generate_action(action_name, parameters) return driver.execute_script(f"mobile:{action_result['type']}", action_result["value"]) perform_action("tap_element", {"id": "button_login"}) ``` 此代码片段展示了如何启动 Android 设备上的特定活动,并调用由 DeepSeek 提供的动作建议器完成某些操作(比如点击按钮)。注意这里的 API 密钥需替换为你自己的实际密钥。 #### 4. **扩展应用场景** 除了简单的 UI 测试外,还可以探索更多高级用途,例如: - 自动生成复杂路径覆盖未触及区域; - 动态调整输入数据集适应不同条件下的验证需求; - 结合机器学习预测潜在缺陷位置从而集中资源重点审查。 以上方法不仅提高了工作效率还增强了整体质量保障体系的能力。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值