理解 RAG 第八部分:缓解 RAG 中的幻觉

在可能阻碍语言模型性能的各种问题和挑战中,幻觉往往位居榜首。当语言模型生成虚假、误导或无意义的信息时,就会出现幻觉。在检索增强生成 (RAG) 系统中,语言模型通过检索和整合外部信息来增强事实依据,这个问题得到了缓解,但并未完全消除。

在我们理解 RAG 文章系列的新一期中,我们将探讨幻觉问题,与独立语言模型相比,它们在 RAG 系统中的表现如何,最重要的是,如何解决这个具有挑战性的问题。

为什么 RAG 系统中的幻觉仍然会发生

正如本系列的开篇所讨论的,RAG 系统相较于传统语言模型的主要优势之一是能够通过检索和整合事实准确的信息来减少幻觉,但幻觉仍然可能由于多种原因而产生。事实上,幻觉仍然是 RAG 系统中最重大的挑战之一,尤其是那些检索精度有限或知识库质量不够高的方法。

RAG 系统中仍然可能出现幻觉的一个原因很简单:如果检索到的数据包含错误,则生成的响应也可能不正确或具有误导性。在依赖于知识库(通常是文档语料库,但有时也是结构化数据库)的 RAG 系统中,数据由人为输入、传感器收集等,因此条目包含错误或不准确的信息并不少见。当 RAG 的检索器优先考虑或误解这些“损坏的”数据条目或文档时,出现幻觉的风险就会增加。如果用户在 RAG 系统中查询与该人相关的人名,文档或数据库中错误输入的人名就足以触发“幻觉秀”……或者更糟的是,如果用户就是那个人!

当检索到的信息缺乏足够的细节或上下文细微差别(这些对于正确解读至关重要)时,就会出现另一个问题。例如,银行聊天机器人 RAG 系统背后的检索器可能会检索有关抵押贷款条件的信息来响应客户的查询。但是,如果客户是残疾人士或特殊身份,有资格享受额外福利,而检索器未能检索到这些特定信息,则生成的响应可能会错失客户的关键机会。这不仅会导致错误信息,还可能导致糟糕的用户体验,从而可能导致客户转向竞争对手。

无论哪种情况,生成器(RAG 系统内的语言模型)都会尝试根据不完整或误导性的数据构建响应,从而导致不可靠或不准确的输出。

缓解 RAG 系统中的幻觉

广义上讲,我们可以识别和分类三种类型的策略或焦点来减轻 RAG 系统中的幻觉:数据、上下文以及检索器和生成器内的 AI 和推理过程。

数据相关的缓解策略

减少幻觉的关键在于确保检索器使用的知识库中包含高质量且经过精心整理的数据。如果检索到的文档包含错误、不精确的条目、过时的信息或偏见,生成器可能会给出误导性或不正确的响应。为了提高可靠性,可以采取的策略包括严格的数据管理、持续系统地更新知识库、自动化的事实核查方法以及过滤掉低质量或不相关的来源。

与环境相关的缓解策略

即使数据的质量和准确性已经得到提升,如果模型未能完全捕捉用户意图或检索所有相关信息,仍然可能出现幻觉。为了解决这个问题,专注于上下文改进的策略包括优化检索技术、使用查询扩展进行精细搜索、应用重排序模型优先选择与特定场景最相关的文档,以及采用先进的提示工程技术。这些策略可能有助于提高检索到的信息和上下文的相关性,从而使最终传递给生成器的提示能够提供坚实的上下文基础。

人工智能与推理过程相关的缓解策略

最后,即使拥有结构良好的上下文和高质量的数据,语言模型执行的推理过程仍然可能导致幻觉。为了应对这一最终挑战,常见的策略包括使用指令遵循数据集(旨在帮助语言模型理解和遵循明确指令的训练实例集合)对模型进行微调、结合逻辑推理和常识推理技术、利用事实核查 API 等外部验证工具,以及在 RAG 工作流中集成多步骤推理框架,以产生更连贯、更精确的响应。

减轻

主要焦点

关键策略与技巧

效益/成果

数据

整理并维护高质量数据

严格管理、持续更新、自动核实事实、过滤低质量来源

减少因信息过时或不准确而导致的错误;提高事实依据

语境

捕捉用户意图并增强检索细节

优化检索方法、查询扩展、重新排序模型、高级提示工程

提高检索信息的相关性和完整性

人工智能与推理

完善模型决策和推理

使用指令数据集、逻辑和常识推理、多步骤框架、外部验证工具进行微调

减轻固有的模型幻觉,从而产生更连贯的反应

小结

幻觉是当今基于语言模型的人工智能系统面临的一个关键问题,RAG 系统尽管能够部分解决这一问题,却也不例外。本文探讨了 RAG 背景下的幻觉问题,重点阐述了在生成响应之前检索外部信息的系统中仍可能出现幻觉的原因,并提出了可在 RAG 系统、数据库和知识库中实施的几种实用策略,以缓解幻觉问题。

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>嗯,用户想了解如何通过Ollama自带的命令生成GGUF文件以供Ollama使用。首先,我需要确认Ollama是否真的支持直接生成GGUF文件。根据之前的引用,引用[2]提到Ollama可以本地运行大模型,但并没有明确说明它能生成GGUF格式的模型文件。用户提到的其他引用中,引用[1]提到了需要.gguf格式的模型文件,比如从Hugging Face下载,而引用[3]讨论了模型幻觉的问题,可能和生成过程无关。 可能需要进一步查证Ollama的官方文档或社区资源。如果Ollama本身不支持生成GGUF文件,用户可能需要使用其他工具,比如llama.cpp中的convert.py脚本,将已有的模型转换为GGUF格式,然后再导入Ollama。或者,Ollama可能接受其他格式,比如PyTorch的.bin文件,通过其import命令加载。 此外,用户可能混淆了Ollama和llama.cpp的功能。Ollama更多是用于运行和部署模型,而生成GGUF可能需要使用llama.cpp的转换工具。需要明确步骤:先下载模型文件,转换格式,再通过Ollama的create命令生成Modelfile,最后加载使用。同时要注意模型的兼容性,比如架构是否支持,参数是否匹配,以及量化级别是否符合要求。这样才能确保生成的GGUF文件能被Ollama正确使用。</think>### 如何通过Ollama生成GGUF文件并确保兼容性 Ollama **本身不直接提供生成GGUF文件的功能**,但可以通过以下步骤结合其他工具实现目标: --- #### **方法一:使用预转换的GGUF文件** 1. **下载GGUF格式模型** - 从Hugging Face等平台获取现成的GGUF文件,例如: ```bash # 示例:下载Unsloth的DeepSeek模型 git clone https://huggingface.co/unsloth/deepseek-r1-gguf ``` 引用[1]中提到的Hugging Face资源是常用来源[^1]。 2. **导入Ollama** - 创建`Modelfile`定义模型: ```dockerfile FROM ./deepseek-r1-gguf/model.Q4_K_M.gguf PARAMETER num_ctx 4096 ``` - 运行`ollama create <model-name> -f Modelfile`加载模型。 --- #### **方法二:手动转换PyTorch模型为GGUF** 1. **安装llama.cpp工具链** ```bash git clone https://github.com/ggerganov/llama.cpp cd llama.cpp && make ``` 2. **转换模型格式** - 将PyTorch模型(`.bin`或`.pth`)转换为GGUF: ```bash python3 convert.py --input-model /path/to/pytorch_model --outfile ./output.gguf --outtype f16 ``` - 支持量化(如Q4_K_M): ```bash ./quantize ./output.gguf ./output-Q4_K_M.gguf Q4_K_M ``` 3. **验证兼容性** - **架构匹配**:确保原模型架构(如Llama、Mistral)与Ollama支持的架构一致[^2]。 - **参数对齐**:检查上下文长度(如128K)、量化方法是否符合目标硬件性能。 --- #### **关键注意事项** 1. **模型兼容性** - Ollama对Llama系列(如Llama 3.1 405B)支持最佳,其他架构需测试验证。 - 使用`ollama list`检查模型加载状态。 2. **性能优化** - 高量化等级(如Q8)适合GPU,低等级(如Q4_K_M)适合CPU。 --- #### **相关问题** 1. 如何解决Ollama加载GGUF文件时的"unsupported format"错误? 2. 量化等级(如Q4_K_M)对模型推理速度有何影响? 3. 如何通过Ollama实现多模态模型的本地部署? --- 通过上述流程,可有效将第三方模型转换为Ollama兼容的GGUF格式。引用[3]提到的幻觉性问题在本地部署中仍需通过RAG等方法缓解[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值