ChatGPT、Claude 和 Gemini 在数据分析方面的比较(第 2 部分)

       欢迎来到雲闪世界。欢迎回到我的系列文章的第二部分,ChatGPT、Claude 和 Gemini 在数据分析方面的比较!在本系列中,我旨在比较这些 AI 工具在各种数据科学和分析任务中的表现,以帮助其他数据爱好者和专业人士根据自己的需求选择最佳的 AI 助手。如果您错过了第一篇文章(利用 OCR 和强大的 GPT-4o 迷你模型对收据进行信息提取),我比较了它们在编写和优化 SQL 查询方面的表现 — 请务必查看! 虽然 2024 年奥运会已经结束,但我们的 AI 竞赛才刚刚开始。到目前为止,Claude 3.5 Sonnet 已经领先!但它能保持自己的地位吗,还是 ChatGPT 和 Gemini 会赶上来?🏆 在第二篇文章中,我们将重点介绍他们独立进行探索性数据分析 (EDA) 的能力。作为一名数据科学家,想象一下拥有一个 AI 工具的便利性,它可以立即为新数据集提供数据洞察和建议,以指导高级分析和建模。让我们看看哪种模型可以提供最佳的 EDA。

添加图片注释,不超过 140 字(可选)

什么是 EDA 探索性数据分析 (EDA) 是检查和分析数据集以了解其主要特征的过程,通常使用视觉技术。它涉及数据清理、汇总统计数据以及识别数据中的模式、趋势和关系。目标是发现指导进一步分析或建模的见解,确保在进行更复杂的任务之前彻底了解数据。EDA 的关键组成部分包括:

  1. 数据检查:了解数据集的结构(例如,行数、列数、数据类型)并预览样本数据。

  2. 数据清理:纠正数据类型、处理缺失值和验证数据(例如,确保在必要时值是唯一的)。

  3. 单变量分析:使用可视化对单列执行描述性统计(例如平均值、中位数、分位数)。

  4. 双变量和多变量分析:探索成对或多组变量之间的关系。

  5. 见解和建议:产生见解和可行的建议,以提供进一步的分析或建模。

评估标准 我们将在“自动驾驶”模式下评估这三种工具,仅提供一个提示来进行 EDA,看看它们能走多远。评估将基于五个关键方面: 1.完整性(5分): EDA报告是否涵盖了数据检查、数据清理、单变量分析、多变量分析和洞察等五个基本方面? 2. 准确性(4 分):报告中的统计计算、可视化以及得出的见解或结论有多准确? 3. 可视化质量(4 分):可视化是否清晰、可解释且与报告相关? 4. 洞察力(4 分):报告是否根据已识别的模式、趋势或关系产生洞察力? 5. 可重复性和文档(3 分):报告是否有详尽的文档记录,以便其他人可以重复该分析? 请参阅下表中的详细评分标准:

添加图片注释,不超过 140 字(可选)

问题设置 这是我们用于本次评估的数据集:来自 Kaggle 的客户性格分析数据集(CC0:公共领域许可证)。 这是我的提示:

 
 

您是一家连锁杂货店的数据科学家。 您有一个数据集,其中包含客户的人口统计信息、 购买数据和营销活动历史记录。您今天的目标是对该数据集 进行彻底的探索性数据分析 (EDA),并提供必要的数据清理、分析和可视化、清晰的见解和可行的建议。 您的 EDA 将用于更好地了解客户、根据客户行为影响产品策略,并为进一步的客户细分分析和建模提供信息。 以下是各列的说明: 1. 人员-ID:客户的唯一标识符 -Year_Birth:客户的出生年份 -Education:客户的教育程度 -Marital_Status:客户的婚姻状况 -Income:客户的家庭年收入 -Kidhome:客户家庭中的儿童数量 -Teenhome:客户家庭中的青少年数量 -Dt_Customer:客户在公司注册的日期 -Recency:自客户上次购买以来的天数 -Complain:如果客户在过去 2 年内投诉过,则为 1,否则为 0 2. 产品 -MntWines:过去 2 年在葡萄酒上的花费 -Mn

<think>好的,我现在需要帮助用户寻找推荐的大模型API接口服务。根据用户提供的引用内容,我需要整理出几个主要的API服务,并简要介绍它们的特点、适用场景以及如何调用。首先,用户提到的引用[1]中提到了紫东太初、百度文心一言、百川智能、ChatGPT、Google GeminiClaude这几个大模型。引用[2][3]则分别详细说明了如何调用百度的APIGoogle的Gemini API。 我需要先列出这些推荐的大模型API,每个都要有简介、特点适用场景。例如,百度文心一言有丰富的预训练模型,适合中文场景;ChatGPT擅长文本生成对话;Gemini支持多模态输入,适合复杂任务。然后,可能需要提到调用这些API的一般步骤,比如获取API密钥、安装SDK、编写代码等,同时结合引用[2]中的代码示例来说明具体操作。 此外,用户可能关心如何选择适合自己需求的API,所以需要根据应用场景给出建议,比如中文NLP选文心一言,需要多模态选Gemini等。还要注意引用文献的正确标注,在每个推荐的末尾加上对应的引用标识,例如[^1]、[^2]、[^3]。 另外,用户可能对API的使用成本、文档支持、社区活跃度等方面感兴趣,但引用中没有提到这些信息,所以可能需要避免猜测,只根据已有引用内容回答。同时,确保使用正确的中文术语,比如“生成式AI模型”、“多模态处理”等,保持语言流畅自然。 最后,生成相关问题,帮助用户进一步了解这些API的使用比较,比如如何申请API密钥、不同模型的性能比较等。确保问题与推荐内容相关,并且能引导用户深入探索。</think>### 大模型API接口服务推荐 #### 1. **百度文心一言大模型** - **简介**:百度推出的中文生成式AI模型,支持文本生成、对话、问答等任务,特别擅长中文自然语言处理。 - **特点**: - 提供丰富的预训练模型,如`ChatGLM2-6B-32K`[^2]。 - 支持中文场景优化,适合本土化需求。 - 通过千帆平台(Qianfan)提供API服务,调用方式简单。 - **适用场景**:智能客服、内容生成、中文语义理解。 - **调用示例**(Python): ```python from langchain_community.llms import QianfanLLMEndpoint import os os.environ["QIANFAN_AK"] = "your_access_key" # 替换为实际AK os.environ["QIANFAN_SK"] = "your_secret_key" # 替换为实际SK llm = QianfanLLMEndpoint(model="ChatGLM2-6B-32K") response = llm("llm大模型是什么?") print(response) ``` --- #### 2. **Google Gemini** - **简介**:Google最新多模态生成式AI模型,支持文本图像输入,生成结构化回答。 - **特点**: - 多模态处理能力,可结合文本与图像分析。 - 适合复杂问题解决,如数据分析、跨模态推理。 - 提供标准化API接口,支持多种开发语言。 - **适用场景**:图像描述生成、跨模态内容创作、智能分析工具。 - **调用步骤**: 1. 在Google Cloud平台申请API密钥。 2. 安装官方SDK(如Python的`google-generativeai`)。 3. 调用模型生成内容[^3]。 --- #### 3. **ChatGPT(OpenAI)** - **简介**:OpenAI开发的通用对话模型,以自然语言交互为核心。 - **特点**: - 强大的文本生成能力,支持长上下文对话。 - 提供`gpt-3.5-turbo`、`gpt-4`等不同版本。 - **适用场景**:聊天机器人、代码辅助、知识问答。 --- #### 4. **百川大模型(百川智能)** - **简介**:国产开源大模型,覆盖文本生成、代码补全等任务。 - **特点**: - 开源免费,适合学术研究小规模应用。 - 支持中英文混合场景。 - **适用场景**:教育、科研、轻量级应用开发。 --- #### 5. **Claude语言大模型** - **简介**:Anthropic公司开发的AI模型,注重安全性可控性。 - **特点**: - 支持长文本输入(最高10万tokens)。 - 提供内容过滤功能,降低生成风险。 - **适用场景**:法律文档分析、长文本总结。 --- ### 选择建议 - **中文NLP需求**:优先百度文心一言或百川大模型[^2]。 - **多模态任务**:选择Google Gemini。 - **通用对话与国际化场景**:考虑ChatGPTClaude。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值