2024年回顾:AI大模型在科学研究中的十大应用案例

大语言模型 (LLM) 已迅速成为科学研究的变革力量,彻底改变了科学家处理复杂问题、分析数据和产生新见解的方式。本文重点介绍 2024 年在科学研究中十个案例,展示了 LLM 在各个科学领域的多样化和有影响力的应用。

1. 药物研发

牛津大学与瑞士联邦理工学院(EPFL)、剑桥大学、康奈尔大学的研究团队合作,开发了一种名为 DiffSBDD 的人工智能系统,用于精确设计和优化药物分子的三维结构。

DiffSBDD 的核心创新在于将 SE(3)- 等变扩散模型引入结构导向的药物设计中。该方法将药物设计视为一个三维条件生成问题,通过引入 SE(3)- 等变性来处理分子系统中的自然对称性,包括旋转和平移。这一方法使得 AI 系统能够像经验丰富的分子建筑师一样,精确设计和优化药物分子的三维结构。

在实际应用中,DiffSBDD 展现了多功能分子设计能力。例如,在激酶抑制剂优化的案例中,模型通过多轮优化,显著提升了分子对目标激酶的结合得分,同时降低了对非目标激酶的结合倾向。此外,DiffSBDD 还能同时调控多个药物属性,包括类药性、合成可行性和结合亲和力等关键物理化学性质。

这一研究成果表明,人工智能在药物研发中具有巨大的潜力。通过利用大语言模型(LLM)和扩散模型等先进技术,研究人员能够更准确地预测小分子与蛋白质靶标的结合亲和力,从而加速药物候选物的筛选过程。这不仅提高了新药发现的效率和精准度,也为个性化医疗和精准医学的发展提供了新的工具和方法。

2. 材料科学

麻省理工学院(MIT)开发了一种名为LLMatDesign的框架,利用大型语言模型(LLM)来实现自主材料发现。

该框架能够分析大量材料数据,精准预测新材料的特性,从而彻底改变材料设计,加速先进材料的开发。

LLMatDesign通过LLM代理来理解人类指令,对材料进行修改,并使用提供的工具评估结果。通过对先前决策的自我反思,LLMatDesign能够在零样本条件下快速适应新任务和环境。在多项材料设计任务中的系统评估显示,LLMatDesign在小数据环境下有效地开发了具有用户定义目标特性的新材料。这一框架展示了在计算环境中以及未来自驱动实验室中,LLM引导的自主材料发现的巨大潜力。

此外,LLMatDesign的代码已在GitHub上开源,研究人员和开发者可以访问并使用这一框架进行材料设计和预测。

这一研究成果标志着人工智能在材料科学领域应用的又一重要进展,有望加速新材料的发现和应用,推动科技和工业的发展。

3. 基因组学

由来自阿贡国家实验室、英伟达、芝加哥大学等机构的二十多位研究人员合作训练了一个大语言模型 (LLM) 来学习基因序列,从而追踪 SARS-CoV-2(新冠病毒)的基因突变并预测值得关注的变异株。这项工作获得了被誉为高性能计算领域诺贝尔奖的戈登贝尔特别奖。与之前大多数应用于生物学的 LLM 训练在小分子或蛋白质数据集上不同,该项目是首批在原始核苷酸序列(DNA 和 RNA 的最小单位)上训练的模型之一。该方法能够更好地理解基因组的演变,并有望应用于任何具有足够基因组数据的疾病预测。

研究团队将基因序列的四字母语言(DNA 中的 A、T、G、C 或 RNA 中的 A、U、G、C)与人类语言类比,解决了 LLM 在生物学领域应用的复杂性。由于基因组的庞大(人类基因组超过 30 亿个核苷酸,冠状病毒约 30,000 个核苷酸)以及核苷酸序列之间可能存在的远距离相互作用,难以将其分解成有意义的单元。英伟达的合作者设计了一种分层扩散方法,使 LLM 能够将大约 1,500 个核苷酸的长字符串视为“句子”进行处理,从而解决了长序列生成和变异分布学习的难题。

4. 生物信息学

国内外有多个研究团队致力于利用图神经网络(GNN)分析蛋白质-蛋白质相互作用(PPI)网络,以预测蛋白质功能和药物靶标。其中一些具有代表性的团队及其研究成果:

西湖大学李子青教授团队:该团队开发了PiFold蛋白质设计方法,采用多层图神经网络生成蛋白质序列。此外,他们还研究了KW-Design方法,通过融合预训练模型的信息提升蛋白质序列设计性能。

https://air.tsinghua.edu.cn/info/1008/2105.htm

中国科学院上海药物研究所郑明月课题组:该团队利用等变图神经网络整合蛋白质-配体相互作用的物理先验知识,构建了通用蛋白质-配体相互作用评分方法EquiScore,在新靶标的药物虚拟筛选中表现出良好的泛化性能。

https://www.shanghai.gov.cn/nw31406/20240715/13666f0c887c43369bcc22b99b3a4cf8.html

江南大学研究团队:该团队提出了一种集成深度学习和图学习的多视图集成学习网络(MINDG),结合图学习和深度学习提取药物和蛋白质的特征,用于预测药物-靶标相互作用。

https://www.jiqizhixin.com/articles/2024-05-25-2

上海科技大学免疫化学研究所白芳课题组:该团队发布了蛋白质-蛋白质相互作用挖掘的新计算方法PPI-Miner,发现了PPI界面上存在一些高度保守的结构片段,有助于理解蛋白质相互作用的机制。

https://siais.shanghaitech.edu.cn/2022/1210/c5404a1040487/page.htm

5. 结构生物学

2024年5月8日,谷歌DeepMind团队在《Nature》上发表了AlphaFold 3的研究成果,再次引爆了生物学界。这项研究标志着蛋白质结构预测领域取得了重大突破,AlphaFold 3能够以惊人的准确度预测所有生物分子的结构,包括蛋白质、核酸、糖类等,甚至还能预测这些分子之间的相互作用。AlphaFold 3能够帮助科学家识别药物靶点、优化药物分子,并加速临床治疗方案的制定。它的应用还可能显著改善对各种疾病(包括癌症、遗传性疾病等)的治疗策略。

6. 环境科学

ClimateGPT是一种专门针对气候变化领域的大型语言模型(LLM),旨在整合跨学科的气候变化研究,提供可靠的气候科学信息,辅助研究人员、政策制定者和商业领袖在应对气候变化时做出明智决策。

主要特点:

多学科整合:ClimateGPT通过整合来自不同学科的研究成果,提供全面的气候变化信息,帮助用户深入了解气候变化的各个方面。

高质量数据集:该模型在包含3000亿个标记的科学数据集上进行了训练,确保其生成的回答具有高准确性和可靠性。

多语言支持:ClimateGPT支持多种语言,利用级联机器翻译技术,使其能够为非英语用户提供服务。

开放源代码:ClimateGPT作为开源平台,用户可以自由访问和使用其模型,促进全球范围内的气候变化研究和应用。

ClimateGPT的模型和相关资源已在Hugging Face上公开发布,用户可以免费下载和使用。

7.天文物理学

2024年10月30日,天文大模型AstroOne在中国天文学会2024年学术年会上首次亮相。由之江实验室与中国科学院国家天文台联合打造,AstroOne拥有700亿参数,经过1万道天文学评测数据集的测评,是当前天文知识能力最强的大语言模型。它能够快速阅读和学习专业文献,检测研究中的潜在错误、数据异常或逻辑矛盾,辅助验证假设和结果的可靠性。

Polymathic AI团队发布了名为“多模态宇宙”的数据集,包含数亿次天文观测和测量,如詹姆斯·韦伯太空望远镜拍摄的星系肖像,以及盖亚宇宙飞船对银河系的观测数据。该数据集旨在训练AI模型像科学家一样思考,推动跨学科的科学发现。

微软亚洲研究院开发了名为Mephisto的大语言模型智能体,旨在分析观测到的数十亿个星系,帮助研究那些行为与现有物理学理论不符的异常天体。Mephisto能够在超级计算机上夜以继日地挖掘星系测光数据,并将有趣的发现反馈给人类专家,拓宽人类科学家的认知边界。

一项研究测试了通过天体物理学数据微调GPT模型的能力,结果表明,经过微调的模型能够成功分类天体物理现象,区分不同类型的伽马射线暴,推导类星体的红移,并估计黑洞参数,证明了大语言模型在科学研究中的有效性。

8. 社会科学

哈佛大学近期利用大型语言模型(LLM)对历史文献进行分析,揭示了人类社会发展的规律。具体而言,研究团队对游乐场报纸进行了深入解码,利用LLM技术对其内容进行分析,从而揭示了历史上人类社会的演变和文化变迁。这一研究为社会、文化和政治研究提供了全新的视角。

此外,哈佛大学的朱科航教授提出了自动化社会科学代理(Agent)与人类行为建模的研究方法。该方法利用LLM自动化整个社会科学研究流程,特别是在因果关系研究中,采用因果结构模型来规范化因果关系的表述,从而提高研究的效率和准确性。

9. 医疗健康

2024年6月12日由哈佛医学院科学家发表在《Nature》杂志上发布探索多模态AI病理大模型助手PathChat。

PathChat的核心组件:

视觉编码器:预训练于超过100万张病理学图像,以提取高维图像特征。

多模态投影模块:将视觉特征映射到大型语言模型(LLM)的嵌入空间,使得视觉和语言信息可以结合处理。

大型语言模型(LLM):使用13亿参数的Llama 2模型,能够处理复杂的自然语言指令并生成响应。

研究方法与数据集:

数据集包含456,916条指令和999,202次问答回合,涵盖图像说明、PubMed文献、病理学病例报告和全视野图像的兴趣区域。

高质量病理学问答基准(PathQABench)包括105例从多家医院收集的全视野图像。

主要结果:

多选诊断问题:

无临床背景:准确率78.1%,显著高于LLaVA 1.5和LLaVA-Med。

有临床背景:准确率提升至89.5%。

开放性问题回答:

PathChat在回答病理学相关复杂问题时,准确率分别为“显微镜检查”73.3%和“诊断”78.5%,明显优于GPT4V。

临床应用:

PathChat能够辅助病理医生进行更准确的诊断,提高诊断效率并减少误诊风险。

该AI助手还可用于医学教育,为病理学培训提供专家级指导。

10. 个性化教育

密歇根大学正在积极利用大语言模型(LLM)来为学生提供个性化的学习体验,旨在提升教育效率,满足不同学生的学习需求。密歇根大学推出了AI驱动的Coursera Coach,利用苏格拉底式对话增强学生的互动性和参与感。这种方法不仅提高了学习效果,还为教育者提供了新的教学工具。

此外,密歇根大学还发布了三款生成式AI产品,应用于教学和日常工作中。这些产品提供个性化的学习计划和多模态的学习体验,使学生能够在不同的场景中进行语言学习,提升学习效果。

这 10 个 2024 年的案例展示了AI大模型在革新各学科科学研究方面的巨大潜力。随着大模型的不断发展,我们可以期待未来几年会出现更多突破性的应用。

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值