今天,我要跟大家分享如何搭建这对黄金搭档,以及我简单的使用心得。
Dify是何方神圣?
Dify是一个开源的LLM应用开发平台,它通过直观的可视化界面,帮助开发者快速构建和部署AI应用,支持包括模型管理、知识库、工作流编排等全方位功能,你可以把它理解为一个类似于扣子的"AI应用的乐高积木系统"。
#来!安装试试看
在开始安装之前,我们需要确保系统满足以下基本要求:
- CPU至少2核心
- 内存至少4GB(建议8GB以上)
- 硬盘空间至少20GB(为了后续扩展)
- 操作系统支持:Windows、macOS或Linux
- Docker环境(Windows用户建议开启WSL2)如果你对 docker 不熟 建议看看这个文章[Docker 和 Docker Compose 命令行工具整理]
1. dify的安装步骤
首先,让我们来安装dify。虽然有多种部署方式,但我建议使用Docker方式部署,这样最简单稳妥也最不容易出错:
- 下载代码:
git clone https://github.com/langgenius/dify.git
cd dify/docker
- 配置环境:
cp .env.example .env
- 启动服务:
如果你使用的是Docker Compose V2:
docker compose up -d
如果是V1版本:
docker-compose up -d
安装完成后,通过以下命令检查服务状态:
docker compose ps
检查要特别关注以下几个关键容器的状态:
- docker-api-1:API服务
- docker-web-1:Web界面
- docker-worker-1:后台任务处理
- docker-db-1:数据库
- docker-redis-1:缓存服务
- docker-nginx-1:反向代理
所有容器都应该显示"Up"状态。然后我们可以通过浏览器访问:
http://localhost/install
2. deepseek-r1的部署
接下来是安装deepseek-r1。这个过程相对简单,但需要注意一些细节:
- 安装Ollama:Windows用户:从官网下载安装包.Linux用户:使用curl安装
curl -fsSL https://ollama.ai/install.sh | bash
- macOS用户:使用Homebrew安装
brew install ollama
安装完成后,打开终端验证:
ollama -v
- 下载deepseek-r1模型:基础版本(推荐新手使用):
ollama run deepseek-r1:7b
高性能版本(需要较好的硬件配置):
ollama run deepseek-r1:14b
下载过程可能需要一段时间,取决于你的网络速度。7b版本大约需要4.7GB空间,14b版本需要约9GB空间。
3. 系统联调与配置
现在两个系统都装好了,需要进行整合配置:
dify基础配置:打开.env文件,配置以下关键参数:
`CONSOLE_URL=http://localhost SERVICE_API_URL=http://localhost UPLOAD_FILE_SIZE_LIMIT=50 # 文件上传限制,单位MB UPLOAD_FILE_MIME_TYPES=.pdf,.doc,.docx,.txt # 允许上传的文件类型`在dify控制台中添加模型配置:访问http://localhost,完成注册,登录后进入Settings → Model Provider添加Local Model配置,这里选择ollama就可以了
选择API格式为Ollama,相关的配置如下,因为我是使用的docker来进行部署的,访问部宿主机的地址记得使用host.docker.internal这个地址,你也可以使用你局域网电脑中的网址!
测试整合,来创建一个简单的聊天会话应用创建一个新的应用
选择刚配置的deepseek-r1模型,我发送测试消息发送测试消息验证响应
实战应用案例
现在来分享一些实际应用场景和具体的操作步骤。
智能文档案例
什么是知识库?知识库就像是一个智能的企业大脑,你可以往里面放入公司的各种资料,比如产品手册、培训文档、客户案例等。当有人需要找什么信息时,不用再到处问同事或者翻文件夹,直接在知识库里搜索就能快速找到答案。它最大的特点是可以帮你管理和查找各种资料,让公司的知识经验能够保存下来,新员工也能更快上手工作。
创建知识库:进入dify控制台,选择"Dataset"→"Create New",上传文档文件,这里的文档支持多种格式,也支持从notion当中导入,还可以同步外部的站点
设置索引参数和检索规则,这里我推荐使用 nomic-embed-text:latest作为你的文件嵌入模型,也是使用 ollama来拉取和运行,pull一下就可以了,完全不用操心其他的操作!
ollama pull nomic-embed-text
完成上面的步骤之后,我们就可以导入自己需要检索的文档。在后面的对话或者工作流中直接引用
工作流案例
配置工作流:创建新的Workflow,我这里直接选择一个已有的工作流: 文档总结工作流
然后添加文档处理节点,这里只需把之前的GPT3.5换成DeepSeek-R1就可以了
操作步骤如下:
当然你也可以自定义设置提示词模板:
`任务:分析以下文档并提取关键信息 文档内容:{{context}} 要求: 1. 提取主要观点 2. 总结关键数据 3. 生成行动建议之之后`击运行输入要总结的内容
最后的运行结果是:
最后
上面演示的只是Dify最简单的聊天应用知识库和工作流的使用,还有更多的功能和工作流值得您挖掘,更多高级的用法
玩Dify的工作流本身就像搭积木一样,用它来搭建各种有趣的 AI 应用。比如做一个智能客服,帮你自动回答客户的问题;或者做个私人助理,帮你整理文档、写邮件、做会议记录;甚至可以做个创意助手,帮你写文案、做营销策划、设计广告语。
你不需要写复杂的代码,只要像拖拽积木一样,把不同的功能模块组合在一起,就能做出你想要的应用。它就像是给你一套 AI 魔法工具,让你能轻松地把脑子里的想法变成现实。
而且扣子能做的,它统统都能做!
因为deepseek已经把开源的威力充分的展示给大家看了!相信随着AI技术的快速发展,dify和deepseek-r1的结合使用将会迎来更多可能性!
结语
通过本文的详细指南,相信大家已经对如何部署和使用这对搭档有了深入的了解。记住,工具的价值在于使用,建议大家在实践中不断探索和优化,找到最适合自己需求的使用方式。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~