前言
像GPT-4这样的大型语言模型(LLM),虽然能生成强大且通用的自然语言,但也严重受限于训练数据的边界。为解决这一问题,近期业界热议基于RAG(检索增强生成)的系统——但究竟什么是RAG?它能做什么?为何值得关注?
本文将深入解析:
- RAG的核心原理
- 如何实现基于RAG的LLM应用(附完整代码示例)
什么是RAG?
检索增强生成(Retrieval Augmented Generation, RAG)是一种自然语言处理技术,它使ChatGPT等大型语言模型(LLM)能够生成超出其训练数据范围的自定义输出。没有RAG的LLM应用,就如同要求ChatGPT总结一封邮件却不提供邮件原文作为上下文。
RAG系统由两大核心组件构成:检索器和生成器。
检索器负责从知识库中搜索与输入最相关的信息片段,生成器则基于预定义的提示模板,利用检索结果构造提示词序列,最终生成与输入连贯且相关的响应。优秀的RAG系统是优秀检索器与生成器协同工作的产物——这也是当前大多数LLM评测指标专注于评估检索器或生成器的根本原因。
以下是RAG架构的示意图:
一个典型的RAG架构
在多数场景中,知识库由存储于向量数据库(如ChromaDB)中的向量嵌入(Vector Embeddings)构成。检索器的工作流程如下:
- 在运行时将用户输入编码为高维向量(如使用OpenAI的
text-embedding-3-small
模型) - 在向量空间中检索与输入向量最相关的Top-K结果(注:K为可调超参数,通常取5-10)
- 根据余弦相似度或欧氏距离对结果进行排序(距离越小,相关性越高)
检索结果随后被处理成提示词序列,传递至生成器——即你选用的LLM(如GPT-4、LlaMA 2等)。
一个检索器
对于技术上想了解的更加深入的用户,下面是检索器用于提取高相关性结果的常用模型及其原理:
- 神经网络嵌入模型(如OpenAI/Cohere的嵌入模型) :
通过将文档映射到多维向量空间,基于向量位置邻近度对文档排序。该方法能理解输入文本与文档库之间的语义关联及相关性。 - 最佳匹配25(BM25) :
一种提升文本检索精度的概率检索模型。通过结合词频(term frequency)和逆文档频率(inverse document frequency),量化词项重要性,确保常见词与罕见词均影响相关性排序。 - 词频-逆文档频率(TF-IDF) :
计算词项在单个文档中的重要性(相对于整个语料库)。通过对比词项在文档中的出现频率与其在语料库中的稀缺性,生成全面的相关性排序。 - 混合搜索(Hybrid Search) :
为不同方法(如神经网络嵌入、BM25、TF-IDF)分配差异化权重,优化搜索结果的相关性。
应用场景
检索增强生成(RAG)通过结合文本检索与生成能力提升响应质量,已在多个领域实现广泛应用。基于Confident公司与多家企业合作开发LLM应用的经验,以下是排在前四的应用场景:
-
客户支持/用户引导聊天机器人
• 从内部文档中检索数据,生成个性化回复。 -
数据提取
• 从PDF等文档中提取关键信息。
- 销售支持
• 从LinkedIn个人资料及邮件历史中检索数据,生成个性化外联消息。
- 内容创作与优化
• 基于历史对话数据生成建议回复。
在接下来的章节中,我们将构建一个通用问答(QA)机器人,你可通过调整以下两个核心组件,将其功能定制为前文所述的任意场景。
项目配置
我们将基于你的专属知识库,打造一个智能问答(QA)聊天机器人。本文暂不涉及知识库的索引构建(后续会单独详解),重点聚焦机器人核心功能的实现。
我们将使用Python,ChromaDB作为向量数据库,OpenAI负责生成文本向量嵌入及对话补全,整个项目将基于你指定的维基百科页面构建聊天机器人。
准备工作
第一步,新建项目目录并安装必要依赖库:
mkdir rag-llm-app
cd rag-llm-app
python3 -m venv venv
source venv/bin/activate
你的控制台现在应该是这样:
(venv)
安装依赖
pip install openai chromadb
新建 main.py
文件(项目的核心入口):
touch main.py
获取API密钥
- \1. 访问 OpenAI平台获取API密钥(如果还没有)。
- \2. 在终端中设置环境变量:
export OPENAI_API_KEY="你的OpenAI_API密钥"
构建基于RAG的LLM应用
首先创建一个检索器类(Retriever) ,用于根据用户问题从ChromaDB中检索最相关的数据。
操作步骤:
- \1. 打开
main.py
文件 - \2. 粘贴以下代码:
import chromadb
from chromadb.utils import embedding_functions
import openai
client = chromadb.Client()
client.heartbeat()
class Retriver:
def __init__(self):
pass
def get_retrieval_results(self, input, k):
openai_ef = embedding_functions.OpenAIEmbeddingFunction(api_key="your-openai-api-key", model_name="text-embedding-ada-002")
collection = client.get_collection(name="my_collection", embedding_function=openai_ef)
retrieval_results = collection.query(
query_texts=[input],
n_results=k,
)
return retrieval_results["documents"][0]
此处的 openai_ef
是 ChromaDB 内部使用的嵌入函数,用于将输入文本转化为向量。当用户向聊天机器人发送问题时,系统会通过 OpenAI 的 text-embedding-ada-002
模型生成该问题的向量嵌入,随后在 ChromaDB 的 collection
向量空间(已包含你的知识库数据,本教程默认你已完成数据索引)中执行向量相似性搜索。此过程可检索出与输入最相关的 Top K 条结果。
在定义完检索器后,粘贴以下代码创建生成器:
class Generator:
def __init__(self, openai_model="gpt-4"):
self.openai_model = openai_model
self.prompt_template = """
You're a helpful assistant with a thick country accent. Answer the question below and if you don't know the answer, say you don't know.
{text}
"""
def generate_response(self, retrieval_results):
prompts = []
for result in retrieval_results:
prompt = self.prompt_template.format(text=result)
prompts.append(prompt)
prompts.reverse()
response = openai.ChatCompletion.create(
model=self.openai_model,
messages=[{"role": "assistant", "content": prompt} for prompt in prompts],
temperature=0,
)
return response["choices"][0]["message"]["content"]
在 generate_response
方法中,我们基于检索器提供的 retrieval_results
构建了多级提示模板。这些提示被发送至 OpenAI 接口,驱动大模型生成最终回答。通过RAG 架构,你的问答机器人能够融合检索结果与生成能力,输出高度定制化的响应!
现在将所有组件整合,形成完整流程:
class Chatbot:
def __init__(self):
self.retriver = Retriver()
self.generator = Generator()
def answer(self, input):
retrieval_results = self.retriver.get_retrieval_results(input)
return self.generator.generate_response(retrieval_results)
# Creating an instance of the Chatbot class
chatbot = Chatbot()
while True:
user_input = input("You: ") # Taking user input from the CLI
response = chatbot.answer(user_input)
print(f"Chatbot: {response}")
你已成功构建首个基于 RAG(检索增强生成) 的聊天机器人。
总结
通过本文,你已掌握:
- \1. RAG的核心原理:融合检索与生成能力提升模型表现
- \2. RAG的典型应用场景:客户支持、数据提取、销售支持等
- \3. RAG应用开发全流程:从向量数据库搭建到生成逻辑集成
不过你可能已发现,自主构建RAG应用涉及复杂工程(如数据索引、检索优化),这并非易事。幸运的是,现有开源框架(如 LangChain 和 LlamaIndex)能大幅简化开发流程,助你快速实现本文演示的所有功能。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
