Llama 3.2-Vision 是一种多模态大型语言模型,有 11B 和 90B 两种大小,能够处理文本和图像输入,生成文本输出。该模型在视觉识别、图像推理、图像描述和回答图像相关问题方面表现出色,在多个行业基准测试中均优于现有的开源和闭源多模态模型。
本文将介绍开源的 ollama-ocr[1] 工具,它默认使用本地运行的 Llama 3.2-Vision 视觉模型,可准确识别图像中的文字,同时保留原始格式。
Ollama-OCR 的特点
-
使用 Llama 3.2-Vision 模型进行高精度文本识别 保留原始文本格式和结构
-
支持多种图像格式:JPG、JPEG、PNG
-
可定制的识别提示和模型
-
Markdown 输出格式选项
Llama 3.2-Vision 应用场景
识别手写文本
OCR 识别
图片问答
配置环境
安装 Ollama
在开始使用 Llama 3.2-Vision 之前,您需要安装 Ollama[2],这是一个支持在本地运行多模态模型的平台。请按照以下步骤安装:
1. 下载 Ollama:访问 Ollama 官方网站,下载适用于您操作系统的安装包。
2. 安装 Ollama:根据下载的安装包,按照提示完成安装。
安装 Llama 3.2-Vision 11B
安装 Ollama 后,可使用以下命令安装 Llama 3.2-Vision 11B[3]:
ollama run llama3.2-vision
安装 Ollama-OCR
npm install ollama-ocr # or using pnpm pnpm add ollama-ocr
使用 Ollama-OCR
OCR
import { ollamaOCR, DEFAULT_OCR_SYSTEM_PROMPT } from "ollama-ocr"; async function runOCR() { const text = await ollamaOCR({ filePath: "./handwriting.jpg", systemPrompt: DEFAULT_OCR_SYSTEM_PROMPT, }); console.log(text); }
测试的图片如下:
输出的结果如下:
The Llama 3.2-Vision collection of multimodal large language models (LLMs) is a collection of instruction-tuned image reasoning generative models in 118 and 908 sizes (text + images in / text out). The Llama 3.2-Vision instruction-tuned models are optimized for visual recognition, image reasoning, captioning, and answering general questions about an image. The models outperform many of the available open source and closed multimodal models on common industry benchmarks.
输出 Markdown
import { ollamaOCR, DEFAULT_MARKDOWN_SYSTEM_PROMPT } from "ollama-ocr"; async function runOCR() { const text = await ollamaOCR({ filePath: "./trader-joes-receipt.jpg", systemPrompt: DEFAULT_MARKDOWN_SYSTEM_PROMPT, }); console.log(text); }
测试的图片如下:
输出的结果如下:
ollama-ocr 使用的本地的视觉模型,如果你想使用线上的 Llama 3.2-Vision 模型,可以试试 llama-ocr[4] 这个库。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
