deepseek+dify部署本地知识库答疑篇

前几天,我发了一篇文章:[DeepSeek + Dify :零成本搭建企业级本地私有化知识库保姆级喂饭教程],在公众号,知乎,星球上,很多朋友都跟着进行了实操,也给了我很多的反馈。

在此,我专门做一下集中答疑,希望朋友们少走弯路,主要集中在以下两点:

一、Dify 和 ollama 关联时,使用本机IP,还是跑不通怎么办?

如果使用本机内网IP联不通的话,可以尝试把指定 Ollama 的 API 地址改为host.docker.internal:11434 试试

改完后,执行如下两个命令:

docker compose down``   ``docker compose up -d

二、知识库 embedding 模型使用哪个比较好?

原本为了降低教程难度,我就使用了deepseek-r1模型作为embedding模型来使用了,使用效果也勉强过得去.

但是,deepseek-r1毕竟不是专门的embeddinig模型,他不是专门为了嵌入场景训练的。

所以,使用deepseek-r1作为嵌入模型时,有些问题回答的不是很尽如人意。因此,我又测试了其他几款专业embedding模型,综合结果显示:bge-m3 效果最好,这里推荐大家使用 bge-m3 作为嵌入模型。

一)安装 bge-m3 模型

bge-m3 模型安装和deepseek-r1完全一样,一个命令即可安装:

ollama pull bge-m3

Embedding 模型那么多,为什么选择 nomic-embed-text ?

BGE (BAAI General Embedding) 专注于检索增强llm领域,经本人测试,对中文场景支持效果更好,当然也有很多其他embedding模型可供选择,可以根据自己的场景,在ollama上搜索“embedding”查询适合自己的嵌入模型。

二)配置 Embedding 模型

三)创建知识库

四)上传资料

五)保存并处理

六)知识库创建完成

七)测试效果

对比可以看到,使用bge-m3之前,对于有些问题的回答,答非所问,虽然有时候答案是对的,但是那是蒙的,并没有引用到正确的知识库对应的信息。

使用了bge-m3之后,很明显答案有理有据,推理依据是正确的上下文,而非猜测。

所以,知识库回答效果跟Embedding模型有很大关系,需要根据实际场景进行选型。


在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值