昨天,我读了Tempus AI的首席执行官(CEO)Eric Lefkofsky的访谈,意识到这家公司的发展模式,对中国医疗AI的发展具有借鉴意义。
于是,我对Tempus AI业务模式进行了汇总,并列举了对中国医疗AI发展的启发,分享给你。
一、Tempus AI的业务与成就
Tempus AI(全称Tempus AI, Inc.,原名Tempus Labs)是一家成立于2015年的美国健康科技公司,总部位于芝加哥,由Eric Lefkofsky创立。
Lefkofsky在其妻子被诊断出乳腺癌后,决心利用数据和人工智能(AI)来推动精准医疗的发展。
短短十年,Tempus AI已成为精准医疗领域的领军企业,其核心业务围绕AI和大数据展开,专注于通过整合临床、分子和影像数据,为患者提供个性化诊断和治疗方案。
主要产品与技术能力
Tempus AI的业务模式以其庞大的数据资产和AI技术为核心,产品和服务覆盖医疗诊断、药物研发和临床研究等多个领域。以下是其主要产品和功能:
产品/服务 | 描述 | 应用场景 |
Intelligent Diagnostics | 利用AI增强实验室测试的准确性和个性化程度 | 提高癌症等疾病的诊断精准度 |
Insights | 包含临床、分子和影像去标识化数据的许可库,提供分析服务 | 帮助制药公司加速药物开发 |
Trials | 临床试验匹配服务,快速识别符合条件的患者 | 优化制药公司的临床试验流程 |
Tempus One | 基于生成式AI的助手,可查询数百万份非结构化文档 | 辅助医生和研究人员获取关键信息 |
Algos | 肿瘤学算法测试套件 | 提供癌症诊断和治疗建议 |
Hub | 桌面和移动平台,用于订单管理和结果接收 | 简化医生的工作流程 |
Lens | 研究平台,帮助科学家分析Tempus数据 | 支持学术和商业研究 |
Tempus AI的核心优势在于其数据规模和技术能力。
据称,公司拥有全球最大的临床和分子数据库之一,这一数据库整合了基因组学、临床记录和影像数据,通过AI算法分析,为医生提供近实时的决策支持。
例如,其xT平台通过分子分析和临床数据结合,显著提高了癌症患者的个性化治疗机会(Tempus Official)。
此外,Tempus的生成式AI工具Tempus One于2023年推出,进一步提升了数据查询和分析效率。
市场表现与影响力
Tempus AI的财务表现反映了其商业模式的成功和市场认可:
- 收入
:截至2024年12月31日,过去12个月收入达6.93亿美元。
- 市值
:2025年5月2日,股价为57.06美元,市值约99亿美元。
- 上市
:2024年6月14日,Tempus AI在纳斯达克上市,股票代码“TEM”。
- 合作网络
:与美国65%的学术医疗中心、50%以上的肿瘤学家以及95%的顶级制药公司率先合作(Tempus Official)。
Tempus AI的成功不仅体现在技术创新上,还在于其商业模式的可扩展性。
通过与制药公司、生物技术公司和医疗机构的合作,Tempus AI构建了一个精准医疗生态系统,不仅服务于患者,还推动了新药研发和临床试验的效率。
二、Tempus AI对中国医疗AI发展的借鉴价值
中国作为全球人口最多的国家,医疗需求巨大,同时医疗资源分布不均、慢性病负担加重等问题突出。
近年来,中国政府通过《健康中国2030规划纲要》等政策大力推动医疗AI发展,特别是在医疗影像、诊断和药物研发领域。Tempus AI的业务模式为中国医疗AI行业提供了以下关键启发:
1. 数据整合:构建医疗AI的基石
Tempus AI的核心竞争力在于其庞大的多模态数据库,涵盖基因组学、临床数据和影像数据。
中国拥有14亿人口,医疗数据的潜在规模远超美国,但数据孤岛和标准化问题限制了其应用。
Tempus AI的经验表明,构建统一的数据平台是医疗AI发展的基础。
借鉴点:
- 数据标准化与共享
:中国可通过政策引导,推动医院、研究机构和企业之间的数据共享,建立国家级医疗数据平台。
- 隐私保护
:借鉴Tempus AI的去标识化数据处理方法,结合《个人信息保护法》(PIPL),确保数据安全与合规。
- 多模态整合
:整合基因、临床和影像数据,开发适用于中国疾病谱(如肝癌、糖尿病)的AI模型。
2. 精准医疗:满足个性化需求
精准医疗是Tempus AI的核心领域,其通过AI分析基因和临床数据,为癌症等疾病提供个性化治疗方案。中国政府已将精准医疗列为重点发展方向,尤其针对高发慢性病。
借鉴点:
- 本土化精准医疗:
开发针对中国常见疾病(如肺癌、糖尿病)的精准医疗AI工具,结合中国患者的基因和生活方式数据。
- 基层推广:
将精准医疗技术下沉到基层医院,提高诊疗质量。
- 政策支持:
通过政府补贴和医保覆盖,降低精准医疗的成本,惠及更多患者。
3. 产业合作:加速创新与应用
Tempus AI与95%的顶级制药公司合作,利用其数据和AI技术加速药物研发和临床试验(Tempus Official)。
中国医疗AI企业可借鉴这一模式,与本土和国际药企、医疗机构合作,形成产业生态。
借鉴点:
- 药企合作:
与国内药企如恒瑞医药、复星医药合作,利用AI优化药物研发流程。
- 临床试验优化:
开发类似Tempus Trials的平台,加速患者招募和试验进程。
- 产学研结合:
加强与高校、科研机构的合作,推动AI技术的转化应用。
4. 诊断创新:提升效率与准确性
Tempus AI的智能诊断技术显著提高了癌症等疾病的诊断准确性,尤其在液体活检和分子分析领域。中国医疗AI企业可借鉴其经验,开发高效的诊断工具,应对医疗资源不足的挑战。
借鉴点:
- AI影像诊断:
结合中国在医疗影像AI领域的优势(如科大讯飞的iFlyTek的语音医疗记录系统),开发更精准的影像分析工具。
- 基因检测:
推广AI驱动的基因检测技术,降低成本并提高普及率。
- 预测性诊断:
开发预测疾病风险的AI模型,助力预防医学。
5. 远程医疗:缩小城乡差距
虽然Tempus AI未直接涉足远程医疗,但其AI技术在诊断和治疗决策中的应用为远程医疗提供了技术基础。
中国在农村和偏远地区的医疗资源匮乏,远程医疗需求旺盛。
借鉴点:
- AI驱动的远程诊断:
开发基于AI的远程诊断平台,帮助基层医生处理复杂病例。
- 数据支持的远程治疗:
利用AI分析患者数据,为远程患者提供个性化治疗建议。
- 技术下沉:
通过5G和云计算,将AI技术推广到偏远地区。
三、从Tempus AI看中国医疗AI的未来
想象一张由人类健康数据编织的巨型壁毯,每一根线条都承载着患者的病痛与希望。
Tempus AI就像一位技艺高超的织匠,用AI的魔法将这纷繁复杂的线条梳理成一幅清晰的图景,指引医生找到每位患者的专属治疗路径。
在中国,这张壁毯更加恢弘,线条更加多样,但也更加充满潜力。
中国医疗AI的崛起,如同一条沉睡的巨龙正在苏醒,鳞片上闪烁着创新的光芒。然而,要让这头龙翱翔九天,技术只是翅膀,智慧才是灵魂。
Tempus AI的航海图为中国指明了方向:数据是罗盘,精准医疗是灯塔,产业合作是风帆,诊断创新是船桨,远程医疗是桥梁。
但中国不能照搬他人的地图,而需根据自己的海域——独特的文化、政策和需求——绘制专属航线。
最终,医疗AI的成功不在于算法的复杂或数据的浩瀚,而在于它能否点亮生命的希望。每一份精准的诊断、每一次及时的治疗,都是对人性关怀的致敬。这不仅是技术的胜利,更是医者仁心的延续。
四、中国医疗AI实施的建议与挑战
实施建议
- 数据基础设施建设:
政府和企业联合投资,建设国家级医疗数据平台,制定数据标准和隐私保护规范。
- 精准医疗研发:
聚焦中国高发疾病,开发本土化AI模型,结合基因和临床数据。
- 产业生态构建:
鼓励医疗AI企业与药企、医院、科研机构合作,形成闭环生态。
- 技术下沉:
通过政策支持,将AI诊断和远程医疗技术推广到基层。
- 人才培养:
加强AI与医疗交叉学科的人才培养,弥补专业人才缺口。
潜在挑战
- 数据隐私:
严格的《个人信息保护法》可能限制数据共享,需平衡隐私与创新。
- 医疗体系差异:
中国基层医疗资源匮乏,AI技术的推广需配套基础设施。
- 成本问题:
精准医疗和AI诊断成本较高,需通过医保覆盖降低患者负担。
- 文化适应:
患者对AI医疗的接受度较低,需加强科普和信任建设。
五、结论
Tempus AI通过AI和大数据的结合,为精准医疗开辟了新路径,其商业模式和技术创新为全球医疗行业树立了标杆。
对于中国医疗AI行业,Tempus AI的经验提供了宝贵的启示:数据整合是基础,精准医疗是方向,产业合作是加速器,诊断创新和远程医疗是突破口。
然而,中国的医疗AI发展需结合本土需求,克服数据隐私、成本和文化等挑战,才能真正实现“健康中国”的宏伟目标。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】