✨这篇文章里面会带有一些 AI Agent 的历史背景,非常有意思,我也尽可能用一些插画来便于大家理解。强烈推荐大家看完!我自己调研完之后也重新思考 Agent 时代的产品范式。
Google 于 2025 年 4 月推出 Agent-to-Agent (A2A) 开放协议,旨在让不同厂商、不同框架构建的 AI 代理(Agent)能够直接互相通信与协作。我认为这是 Google 希望在 AI Agent 领域延续之前 Android 在移动设备生态的打法的尝试(我会在文章结尾解释)。
✨本文将介绍 Google A2A 协议(Agent 2 Agent),希望能帮助大家彻底搞懂几个问题:
-
A2A 是什么?
-
A2A 和 MCP、Function Calling、API 的区别?
-
A2A 的前身和与对未来趋势?
-
A2A 对打造 Agent 产品的影响?
-
AI Agent 时代如何打造产品?
💬 A2A 是什么?
目前每天都会出现大量的 AI Agent 产品,比如销售 Agent 和客服 Agent,但是这些 Agent 由不同的公司开发,有各自的数据格式和工作流程,因此不同的 Agent 之间无法直接协作,导致无法实现复杂的需求。
比如:用户找到销售 Agent 反馈产品问题,但这事应该是客服 Agent 处理,但销售 Agent 无法直接让客服 Agent来回答问题或创建工单,就挺尴尬。
✨Agent-to-Agent (A2A) 可以简单理解为 AI Agent 之间的通用语言和标准工作流程,让来自不同 AI Agent 可以像一个部门里不同岗位的人一样协作。
💬 A2A 和 MCP、Function Calling、API 的区别?
🤯技术概念太复杂,简单地说:
-
A2A:让 Agent 之间能够协作。
-
MCP:让 AI 能够使用外部数据和工具。
-
Function Calling(函数调用):让 AI 能够自己调用外部 API。
-
API(接口):互联网世界中,存在时间最久、最通用的调用数据和工具的方式。
😏用通俗的例子解释几个之间的关系:
-
一个工厂里有几个负责不同工作的人(Agent)
-
这几个人围绕着一条统一的流水线(A2A)进行协作
-
每个负责人都有一个小助手(MCP),小助手用各种工具🛠️(MCP Tools)帮忙干一些脏活累活
-
工厂里有很多零件🧷(API),比如螺丝、钉子、玻璃、铁皮等
-
这些负责人其实自己也可以使用(Function Calling)零件(API)做点东西,只是效率不高,还得一个个学,所以都喜欢找小助手(MCP)帮忙。
✨我弄了个详细对比表格,有需要的自取保存。
💬 A2A 的前身与未来趋势?
✨我最近在调研 A2A 协议时发现,早在50年前就有类似的概念和实现🤯,多智能体协作的思想可以追溯到1970-80年代。当时的研究者开始探讨分布式问题求解,希望多个自主智能体(Agent)互相配合来完成复杂任务。
其中有两个最重要的领域:
-
多智能体系统(Multi-Agent System, MAS)
-
分布式人工智能(Distributed AI)
一个著名的早期范式是黑板系统(Blackboard Systems)。在黑板架构中,不同的 Agent 通过共享一个全局“黑板”(公共数据结构)来交流信息:每个Agent可以在黑板上写入或读取部分解,从而逐步构建解决方案。
与此同时,另一项突破是契约网协议(Contract Net Protocol, CNP)。Reid G. Smith在1980年提出CNP,用于多Agent间的任务分配与合作控制。
在契约网中:
-
一个Agent可作为任务发布者(经理),将任务公告给网络中的其它Agent;
-
有能力完成任务的Agent作为承包者(投标者)提交投标方案,任务发布者根据投标选择合适Agent执行任务。
这一过程类似封闭式拍卖:任务由最高效的投标Agent获得,任务还可进一步分解再外包。契约网协议提供了一套高层通信与控制机制,使分布式智能体能够通过“招标-投标-授予合约”机制动态协调任务分工。这一协议后来被广泛应用于多智能体任务分配、负载均衡等情景,是早期促进代理协作的里程碑技术。
除了黑板和契约网,1980年代还出现了分布式问题求解策略,如 Durfee 和 Lesser 提出的部分全局规划(Partial Global Planning),让各 Agent 在本地规划的基础上交换计划摘要,从而形成一致的全局方案。
总的来说,这一时期奠定了核心理念:智能可以通过多个自治子实体的交互与协同而涌现,每个Agent自主决策且无集中控制,通过通信实现群体智能。
在互联网领域,曾流行过软代理(Software Agents)概念,指在网络中代表用户执行任务的自治程序。例如,信息检索代理会根据用户兴趣自动搜集新闻,电商代理自动比价和竞拍商品。
麻省理工媒体实验室的“Kasbah”项目(1996)就是让用户创建买卖代理,在线上市场自动讨价还价。此类电子商务代理通过协商协议达成交易,被视为MAS在电子市场的应用雏形。旅行助理代理系统可由多个专门代理(航班查询、酒店预订、路线规划等)互相通信组成:用户的请求会触发不同代理协同满足各子需求,最后汇总结果。
从目标上看,A2A 与历史上的多智能体系统一脉相承:它们都追求让异构智能体能够交流信息、协调行为,形成动态的多Agent生态。不过以往的平台大多在特定范围内运作(如同一技术框架或组织内)。
相比之下,A2A 的目标是在更广泛的企业应用和云环境中,让不同来源的Agent无缝协作。
刚好昨天(2025 年 5 月 8 日)微软在官网宣布 Azure AI Foundry 和 Microsoft Copilot Studio 两大开发平台支持最新的 Agent 开发协议 A2A,并且会与谷歌合作一起开发扩大 A2A 协议。微软 CEO Satya Nadella 对 A2A 和 MCP 给出了高度评价,认为像 A2A 和 MCP 这样的开放协议是实现 Agent 网络的关键。
这对于 Agent 赛道来说意义重大。因为 Agent 在使用 A2A、MCP 协议之后,可以打破数据、开发模式、通信交互、操作环境等诸多壁垒,轻松构建超大规模的复杂智能体自动化流程。
✨一旦 A2A(或者其他类似的多智能体系统) 能够成型,并且 Agent 的能力能够借助更强的大模型、更丰富的MCP工具和API资源进一步提升,那么接下来就有可能出现 Agent的集体智能和涌现现象:
-
一群 Agent 合作能做的事情更复杂
-
一群 Agent 能自己发现问题并解决问题
🔮在这个无比美好的未来里,个人生产力借助算力和算法得到极大提升。(人均算力需求将比现在大成千上万倍,因此算力基础设施值得大力投资,英伟达等算力基础设施还会涨😏)
💬 A2A 对打造 Agent 产品的影响?
🤔想象一下,如果我们可以通过手机语音助手,直接调用微信、淘宝、美团这三个App的功能,或者这三个App之间可以相互调用,产品的设计和用户体验会发生什么变化?
在多智能体系统(Multi-Agent System, MAS)里,手机语音助手的角色就像一个终极入口,微信、淘宝、美团可以理解为三个有不同定位的Agent,各自有擅长的地方(可以独立完成任务,也可以互相合作),同时互相有部分重合(互相竞争)。
Agent 之间关系大致分为3种:
-
独立完成:当任务是具体、不可拆分、可用简单标准量化时,独立完成任务的效率最高。
-
合作完成:当任务变得不那么具体、需求复杂、量化标准多样时,合作完成的效率最高。
-
竞争完成:当任务追求相对成本最低时,竞争完成的效率最高。
人在现实中由于时间精力等限制,不可能样样精通,所以会出现技能分化,将更多的时间精力投入到收益最高的事情上。也就是俗话说的:“不要用自己的兴趣挑战别人的吃饭技能”。
✨Agent也类似,由于数据、算力、算法等限制,不可能出现万能 Agent 把所有事情都做完,所以 Agent 也会越来越“高度分化”。
而且由于使用 Agent 产品的不再是人,而是 AI 或者另一个 Agent,AI 是不会被产品里繁多的功能“困住”并产生所谓“用户粘性”和“消费冲动”。因此往单一 Agent 里面塞更多二级功能就没啥用了。
毕竟当我们通过语音助手提出“点个酸辣粉”,AI 永远只会选择能“独立完成”且“完成得最好”的美团,而不是微信和支付宝。
✨因此我的判断是 AI Agent 时代更要把产品做小、做精。要打造一个在特定领域有极致效果的 AI Agent 产品(而不是大而全),才有可能在 A2A 的生态中成功。
🤔在文章开头,我说 A2A 是 Google 希望在 AI Agent 领域延续之前 Android 在移动设备生态的打法的尝试。相信有部分读者已经能够理解其含义:如果A2A 真的能够成为 Agent 时代协作的标准,那就像 Android 通过开源在实际上普及了智能设备并且占据了底层操作系统。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】