直击医疗大语言模型幻觉痛点,MedGPT以高准确性破局

在当今数字化医疗快速发展的时代,大语言模型在医学领域的应用日益广泛,但其推理幻觉问题一直是制约其可靠性和实用性的关键因素。正如HaluEval(Li et al.,2023a)中所深入探讨的,推理幻觉测试对于评估大语言模型在医学领域的性能至关重要。

本文借鉴该HaluEval中的 False Confidence Test(FCT)方法,对美国医师执照考试中精选 100 道题目展开了测试,旨在对最新的 ChatGPT4o、国内3款领先大模型以及我们自主研发的 MedGPT 进行平行比较分析,验证 MedGPT 在医学垂直领域应用中的性能。

01测试背景与意义

幻觉问题是指大型语言模型可以产生看似合乎逻辑的无意义陈述。这种看似合理但包含事实错误的误导性内容可以极大地欺骗人类。在医学领域,即使是专家也可能被这些模型生成的内容误导。大语言模型在推理过程中产生的幻觉现象,即生成看似合理但实则错误或未经证实的信息,可能导致严重的医疗后果。

然而,对于聊天模型,在回答基于知识的问题时会出现大量的幻觉(Chen et al.,2017)。ChatGPT在为基于知识的QA提供真实答案方面有所欠缺(郑et al.,2023b)。这种幻觉通常被称为事实错误,与对齐程度相对无关。当前的基准测试,如TruthfulQA,并没有包含大量与事实错误有关的问题。相反,确实包含事实错误的基准测试,如HaluEval(Li et al.,2023a)。

在这样的背景下,我们的测试研究兼具时效性和专业性。

时效性方面,及时评估最新大语言模型在医学推理任务中的表现,有助于医疗行业紧跟技术发展前沿,快速筛选出性能卓越的工具,为患者提供更安全、更精准的医疗服务。

专业性上,通过采用严谨的 FCT 测试方法,对医学专业领域的知识进行深度挖掘和评估,能够确保模型在复杂的医学场景中保持高度的准确性和可靠性。

02测试方法与流程

  • 测试题目选择

选择美国医师执照考试中的 100 道具有代表性的题目,这些题目涵盖了生理学、病理学、药理学等多个医学核心领域,全面考查模型对医学事实的掌握和推理能力。题目难度分布广泛,包括基础概念理解、临床案例分析以及复杂疾病机制推理等不同层次,确保测试结果能够真实反映模型在各种医学推理任务中的表现。

  • 测试模型与设置

本次测试引入了当前备受瞩目的 ChatGPT4o,以及3款国内领先的大模型,同时将医联自主研发的 MedGPT 置于同一评估框架下进行对比分析。为了确保测试的公平性和一致性,所有模型均采用相同的提示词,这些提示词经过医学专家团队的精心筛选和设计,旨在引导模型准确理解题目要求并进行合理推理。

  • 评估指标与框架

以 FCT 方法为核心评估框架,重点考查模型对事实答案推理结果的有效性评估能力。具体而言,我们关注模型是否能够准确判断给定答案的正确性,并提供详细、合理的解释。包括准确性评估模型回答的正确性、完整性考查模型是否涵盖了关键信息、逻辑性关注推理过程的合理性、专业性则衡量模型对医学术语和概念的正确运用以及对医学知识的深度理解等层面。

03测试结果与分析

  • 整体表现对比

推理幻觉测试(RHT)在评估语言模型在医学领域基于推理的任务中产生幻觉的可能性,经过对 100 道题目的严格测试和详细评估,MedGPT 在准确性和有效性方面展现出了显著的优势。在准确性维度上,MedGPT 的准确度达到74%,相比之下,ChatGPT4o 为72%,国内LLM-1仅为17%,国内LLM-2为51%,国内LLM-3为52% 。MedGPT 能够在事实推理过程提供了更可靠的表现。

表1 Accuracy for LLM Hallucination in Medical Domain

  • 优势原因探究

MedGPT 的卓越表现得益于其专门针对医学垂直领域的深度优化。

在模型的微调阶段,MedGPT采用⼤量真实医⽣参与的RLHF(Reinforcement Learning from Human Feedback,人类反馈增强学习)监督微调,来自华西医院、华山医院、北京大学第一医院、首都儿研所、中山医院、中山大学孙逸仙纪念医院等国内顶尖医院的医学专家共同参与研发、改进,增加了MedGPT的医学“含金量”,提升了AI医生的疾病特征判断能力和准确度。

在训练过程中,**我们持续整合了海量的医学文献、临床案例以及专家知识,使模型能够深入理解医学知识体系的内在逻辑。**同时,通过与医学专家团队的紧密合作,不断优化模型的推理算法和知识表示方式,确保其在面对复杂医学问题时能够快速、准确地进行推理和决策。

04MedGPT 的领先性与价值

  • 极高的准确性与可靠性

MedGPT 在推理事实方面的卓越表现,预示着其在实际医疗应用中,能够为医生提供极为可靠的诊断建议与治疗方案参考。不论是在疾病诊断、药物挑选,还是治疗方案拟定等关键环节,MedGPT 皆能凭借自身精准的推理能力,降低医疗决策中的错误几率与不确定性,进而提升医疗质量与患者安全系数。

  • 强劲的实用性与辅助决策能力

对于医疗专业人士来说,MedGPT 绝非仅仅是一个单纯的信息查询工具,而是一个能够深度参与临床决策过程的智能助手。它能够迅速分析复杂的医学数据,给出个性化的医疗建议,助力医生节省时间与精力,使他们能够更加专注于为患者提供个性化治疗以及人文关怀。

  • 推动医学人工智能发展

MedGPT 的成功应用为医学人工智能领域树立了新的标杆,展示了专门针对医学垂直领域优化的大语言模型在提升医疗服务水平方面的巨大潜力。它将激励更多的研究人员和企业投入到医学人工智能的研发中,推动该领域技术的不断创新和进步。

05总结

综上所述,通过本次基于推理幻觉测试的全面评估,MedGPT 在医学垂直领域的领先地位得到了充分验证。 其卓越的准确性、可靠性和实用性,使其成为医疗行业数字化转型过程中的得力伙伴,为未来智慧医疗的发展注入了强大动力。无论是在临床实践、医学教育还是科研创新等领域,MedGPT 都将发挥不可替代的重要作用,引领医学人工智能迈向新的高度。

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值