基于DeepSeek大模型+RAG的智慧农业知识库与专家平台

基于deepseek大模型农业专家系统farm-rag

源代码

http://www.gitpp.com/naturepaper/farm-rag

这个开源系统已经完整,能运行,基于这个开源,可以开发更多更高级的 智慧农业专家系统

DeepSeek真是国运奇迹,开源免费,全球大量用户,极大提高生产效率。

DeepSeek,能够赋能农业,这个开源:基于deepseek大模型农业专家系统farm-rag

这个开源系统已经完整,能运行,基于这个开源,可以开发更多更高级的 智慧农业专家系统。希望大家能参与进来

畅想一下,基于DeepSeek的农业专家系统的未来

DeepSeek确实是一款具有开创性的开源语言模型,其开源免费的特性为全球用户提供了强大的技术支持,极大地促进了生产效率的提升。基于DeepSeek大模型构建的农业专家系统Farm-RAG,对农业领域具有深远的意义和影响。以下是对农业专家系统Farm-RAG具体用处的归纳:

  1. 精准农业管理:
  • 作物健康监测:利用DeepSeek的图像识别技术,如DeepSeek-R1-Lite_Preview模型,分析无人机拍摄的农田图像,实时识别病虫害,如通过叶片病斑特征判断炭疽病感染等,帮助农民及时采取措施,减少病虫害对作物的影响。

  • 智能灌溉系统:结合土壤传感器数据与DeepSeek的气象预测模型,动态调整灌溉方案,实现节水灌溉的同时提高作物产量。例如,在山东寿光某家庭农场,通过DeepSeek的智能灌溉系统,实现了节水40%,同时提高了番茄产量18%。

  1. 生产流程优化:
  • 牲畜行为识别:使用DeepSeek的图像识别技术,如DeepSeek-Vision,识别牲畜行为,如母猪分娩体征、奶牛发情特征等,帮助农民更好地管理牲畜,提高养殖效率。例如,四川某家庭牧场通过该系统,将母牛受孕率从68%提升至83%。

  • 农产品分级:部署DeepSeek的图像识别技术进行农产品分级,如苹果糖度光谱分析+外观检测等,提高农产品的品质和附加值,满足市场对高品质农产品的需求。

  1. 供应链管理:
  • 生产计划规划:输入历史销售数据与DeepSeek的数学模型(如DeepSeek-Math),生成动态生产计划,帮助农民更好地规划生产和销售,减少产能过剩和滞销损失。例如,浙江某草莓农场通过该系统,将滞销损失从20%降至7%。

  • 产品溯源报告:整合DeepSeek的自然语言处理(NLP)技术,生成产品溯源报告,自动生成种植日志摘要等,增强消费者信任,提高农产品的市场竞争力。

  1. 市场运营创新:
  • 智能客服系统:部署DeepSeek的智能客服系统,如DeepSeek-R1-Instant,构建24小时农产品咨询机器人,提高客户服务质量,及时解答消费者疑问,提升品牌满意度。

  • 个性化营销:使用DeepSeek的聊天机器人(如DeepSeek-Chat)生成短视频脚本、广告文案等内容,进行个性化营销,提升品牌曝光度和转化率,推动农产品销售。

  1. 种子研发与育种:
  • 基因数据建模:DeepSeek可通过基因数据建模与强化学习算法,预测不同基因组合的抗病性、产量及适应性,从而缩短育种周期,降低成本。例如,中国农科院与阿里合作开发的平台,利用AI模拟气候、土壤条件,预测作物性状并筛选最优基因组合,将育种周期从10年以上缩短至3-5年。
  1. 田间管理自动化:
  • 实时监测与调节:通过传感器实时监测土壤湿度、光照强度等参数,DeepSeek可自动调节灌溉与施肥方案,提高资源利用效率。
  1. 农业机械智能化:
  • AI驱动的农业机械:AI驱动的农业机械正替代传统人力,解决劳动力短缺问题。播种机器人、收割机等可根据地形和作物条件优化操作模式,提高生产效率。

综上所述,基于DeepSeek大模型构建的农业专家系统Farm-RAG,通过精准农业管理、生产流程优化、供应链管理、市场运营创新等多个方面,为农业生产带来了智能化、精准化的解决方案,有助于提升农业生产效率和产品质量,推动农业可持续发展。

基于deepseek大模型农业专家系统farm-rag

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值