DeepSeek R2发布在即,我先来给大家预测一波

路透今晚报道了DeepSeek可能在5月前发布r2。之前DeepSeek研究员Daya在2月初已经说过:RL还在早期,今年会看“显著进步”(significant progress)

其实在r1论文中也提到过:由于目前RL训练数据还很少,R1的下个版本会大幅提升。

也就是r1论文中的下图,以及论文所述:随着RL数据的增加,模型不仅解决复杂推理任务的能力持续稳定提升,且会自然涌现出一些复杂行为能力,比如“反思”、“探索不同方法”。这些能力不是人类设计,而是随着模型在RL环境中训练,自然涌现的。

粗浅的理解,现在不需要算法上的巨大创新,按照目前路线+更多算力+DS如此强的infra能力,基于目前的V3基座模型,依然可以取得r2/r3。当看到RL提升边际放缓,再基于新的基座V4,继续做RL,进一步推进推理模型提升。也就是下面这张图:(左脚踩右脚示意图)

而参考OpenAI的路线图,o3已经决定不发布完整模型,GPT-4.5也成了最后一个独立发布的基座模型,意味着GPT-5(混合模型)开始,越来越黑盒。说白了,以后无论是基座模型还是推理模型本身,都是“原料”而不是“最终产品”,CloseAI和Anthropic一定会雪藏。

DeepSeek要做的,就是在别人继续闭源的时候,继续开源。r2应该对标的是o3完整版,而V4至少应该对标GPT-4.5,基于V4+RL的模型,应该对标是未来的所谓“GPT-5”。因此合理预期应该是V4可能会加入多模态能力,但r系列依然是推理模型。且这个过程中,所有的“原料”全部开源,不仅原料开源,按照这次代码五连发,连制造原材料的“配方”都直接开源。

这里面其实没有什么DeepSeek不知道的秘密,甚至在infra层面远超北美很多模型大厂。今天我们在星球讨论的:DeepSeek甚至可能比英伟达更懂如何使用GPU。而所谓Research上的创新,OpenAI o系列的灵感也来自于早已发表的“开源”paper,叠加自己的算力优势和工程探索实现。说到底没人全靠自己闭门造车,都受益于全世界“开源”研究或实践的喂养。

因此说回来,相比于r2,大家反而应该更期待V4,因为这打开了推理模型另一个level天花板,开辟的是另一条全新跑道。r2是时间表上确定的事情,而V4会是一个惊喜。这都会在今年发生。

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 使用DeepSeek R2框架集成或配置聊天框 为了实现基于DeepSeek R2框架的聊天框集成或配置,开发者需遵循特定流程来确保应用能够顺利部署并运行。此过程涉及几个重要环节。 #### 准备工作环境 在开始之前,确认已安装必要的依赖库以及开发工具链。对于Python项目而言,通常建议创建虚拟环境以隔离不同项目的包管理[^1]。 ```bash python -m venv myenv source myenv/bin/activate # Linux/MacOS 或者 Windows下使用 `myenv\Scripts\activate.bat` pip install deepseek-r2-sdk ``` #### 初始化SDK客户端实例 通过初始化`DeepSeekR2Client`类的个实例对象,可以连接到远程服务器并与之交互。这步骤中需要提供API密钥作为认证凭证[^2]。 ```python from deepseek_r2_sdk import DeepSeekR2Client client = DeepSeekR2Client(api_key='your_api_key_here') ``` #### 配置对话界面参数 设置好基本通信渠道之后,则要定义前端展示部分的具体样式和行为逻辑。这部分可以通过自定义HTML/CSS文件完成,也可以利用现成UI组件库简化操作[^3]。 ```html <!-- index.html --> <div id="chat-container"> <!-- 聊天记录区域 --> </div> <button onclick="sendMessage()">发送消息</button> <script src="./path/to/deepseek-r2-chat.js"></script> <script> function sendMessage() { const messageText = document.querySelector('#message-input').value; client.send_message({ text: messageText, on_response: function(response){ console.log('收到回复:', response); } }); } </script> ``` #### 实施事件监听机制 为了让整个系统更加智能化,在实际应用场景里往往还需要加入些额外的功能模块,比如自动补全提示、上下文理解等功能。这些都可以借助于JavaScript编写相应的回调函数处理程序来达成目的[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值