“ 智能体是大模型应用的未来,而协议却是决定大模型应用的行业标准。”
2024年是大模型应用探索的元年,而随着大家对大模型应用的探索,大模型被应用到越来越多的场景;但同时也面临着各种各样的问题。
特别是在智能体方面的应用探索,面临着各种各样的问题;而其中目前最头疼的无非就是各家大模型公司没有统一的标准,关于智能体的技术实现也各式各样;而这直接阻挡了大模型应用方面的进展。
而解决这个问题最好的办法是什么?
那就是制定行业标准,统一度量衡;就类似于网络技术发展的初期,制定了计算机网络模型,以及每层网络模型的协议;因此,才有了今天的互联网。
当然,目前关于大模型方面的协议还处于初草阶段,可能还不是很完善;但有了好的开始就说明成功了一半。
所以,今天我们就来介绍一下关于大模型应用的两个新的协议或者说标准——MCP和A2A。
大模型应用协议
MCP协议
关于MCP协议在之前的文章中已经有过简单的介绍,其目的就是统一大模型调用外部工具的标准;比如说大模型从外部数据库中获取数据,调用第三方接口实现一些功能等等。
而面临着复杂的第三方接口和各种中间服务,以及安全,加解密等问题;也为了促进大模型行业应用的发展,因此怎么把大模型与现有系统的能力结合起来就成为了一个急需解决的问题。
而这就是MCP协议诞生的主要原因。
MCP协议全称是模型上下文协议(Model Context Protocol),简称MCP。
MCP协议是由美国前OpenAI成员创立的Anthropic公司所发布的一篇论文—— Introducing the Model Context Protocol。
MCP (Model Context Protocol,模型上下文协议)定义了应用程序和 AI 模型之间交换上下文信息的方式。这使得开发者能够以一致的方式将各种数据源、工具和功能连接到 AI 模型(一个中间协议层),就像 USB-C 让不同设备能够通过相同的接口连接一样。MCP 的目标是创建一个通用标准,使 AI 应用程序的开发和集成变得更加简单和统一。
A2A协议
而A2A协议的全称是Agent-to-Agent,也就是智能体之间的通讯协议;其目的是整合不同智能体的功能,通过A2A协议就可以串联多个智能体来完成一个任务。
正如上面MCP协议中所介绍的那样,智能体是由大模型+其它三方接口或工具构成的一个能够独立完成某种任务或功能的复合体;比如说使用大模型+地图接口就可以实现一个路线规划的智能体;而大模型+美团接口就可以实现一个具备本地生活功能的智能体。
而如果要想让一个智能体,同时能够进行旅游规划,路线规划以及订票,订酒店的能力;这时有两种实现方式,一是实现一个巨复杂的智能体,把地图,票务,酒店等接口全部集成进去。
但这样就面临着一个问题,那就是大模型存在一定的幻觉现象,包括在智能体中;其次,根据软件的设计原则——单一原则;智能体的功能越简单越好,因为简单就代表着稳定性强,不容易出错;而复杂功能可以使用多个具备不同能力的智能体来联合实现。
比如说,以上面的旅游为例;实现一个规划路线的智能体,再实现一个酒店智能体和票务智能体;这样通过三个智能体之间的组合,就可以实现我们所需要的功能。
而这就是A2A协议的作用。
MCP协议解决了大模型怎么使用外部工具的问题;而A2A协议解决了智能体之间的协作问题。
A2A 基于五个核心原则:
拥抱智能体能力:支持自然、非结构化的协作模式。
- 利用现有标准
:使用 HTTP、Server-Sent Events(SSE) 和JSON-RPC,确保与现有系统的兼容性。
- 默认安全
:支持企业级认证和授权,启动时与OpenAPI保持一致。
- 支持长期任务
:处理从快速任务到深入研究的任务,提供实时反馈、通知和状态更新。
- 多模态支持
:支持文本、音频、视频流等多模态通信。
总结
关于大模型应用协议的出现,意味着大模型的应用越来越多,急需一个行业标准来统一规范;因此,这也意味着大模型的前景一片光明。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】