当前生成式AI(AIGC)领域激烈的竞争环境下,从大厂到中小企业,再到创业者和机构,都在积极投身于这片新蓝海,希望在竞争中占据先机。
业界逐渐认识到,大模型的价值实现依赖于其在各行各业的应用落地,特别是在与垂直行业的深度融合中。因此,行业大模型逐渐取代通用大模型,成为新的发展趋势。
携程集团发布了旅游行业首个垂直大模型“携程问道”,旨在聚焦全球旅游行业,通过AI技术提供全方位的智能助手服务,涵盖旅行前、中、后各个阶段。
实测:携程问道真实能力如何?
行业场景为大模型提供了理想的实践舞台。
与通用大模型相比,行业大模型必须针对特定场景进行优化,融入行业专业知识(Know-How),或利用知识图谱来解决专业问题,从而打造出更加实用的智能服务。
以旅游产业为例,其业务链条长且场景多样,主要分为行前规划、行中体验和行后反馈三大环节。
其中,行前规划是用户最为耗时、选择最为困难、过程最为复杂的部分。“携程问道”大模型主要聚焦于行前规划环节。
端午假期马上到来,相信大家也在开始着手规划出游行程,到底AI能不能帮助我们更好地规划旅行呢?让我们一起来测评一下
01
出行地点推荐
首先是旅行地点的选择,指定了范围和要求,模型能够为我们提供一些旅游参考地点
除了具体的范围,还可以指定旅游体验,在测试中,相关推荐也都是一些海滨城市
02
机票高铁票价查询
询问机票价格的时候,会自动跳转到车票购买页面,测试了对日期的识别,不管是具体的6月8日,还是今天明天这样的词语,模型都能够识别出来
想要对比价格和时间的话,模型可以推荐近期的特价机票。
但是对于高铁的车次和时间的话,跳转的还是购票页面,还是需要用户进一步的筛选。
03
住宿地点,酒店预订
当我们询问模型,推荐一个住宿大致地点的时候,模型给出的推荐是一个具体的酒店,可以一键预定,但是两次询问的答案同质性比较高。
我们询问的时候是想知道哪个区域出行比较方便,但模型似乎没有理解到地点这一需求,在意图识别这一块还有改进的空间。
04
门票价格
对于端午假期这个范围区间,模型理解得大致准确,但门票的价格给出的还是平日票的价格,没有显示出端午假期的实际价格,用户还是需要去自行确定。
05
旅游建议
针对出国旅行这类需要考虑众多细节的行程,模型的回答还是比较全面的,提供了具有一定参考价值的信息,帮助用户节省了查询出行注意事项的时间。
但是在具体内容上,模型给出了曼哈顿这一不合常理的地点。
06
行程规划
可以看出前两天的规划还比较合理,景点距离的也都很近,但第三天的行程安排,火车东站,体育公园,和京华城广场有一些让人摸不着头脑,既不是热门景区也缺乏合理性。
通用AIGC存在的一个问题是给出的答案并不是那么可靠。
对于旅游业而言,体验感非常重要,即使规划节省半小时,但推荐的酒店或者行程结果可能有5%的几率是错的,那就得不偿失。
从我们实测的数据来看,模型大部分的效果还是可以的,相比于通用大模型确实可以在某些方面确实可以节省一些做攻略的时间。
当然在很多方面还存在改进的空间,再加上大模型始终存在的幻觉问题,想要让模型一键规划所有的事情还是为时尚早,想法和现实还是存在一定的差距。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。