人工智能咨询培训老师叶梓 转载标明出处
我们在做旅行规划时面对众多的目的地选择、复杂的交通连接、预算限制以及个人偏好等多重因素,即使是最有经验的旅行者也可能会陷入选择困境。传统的旅行规划方法往往依赖于人工操作,这不仅耗时耗力,而且难以保证计划的最优性和可执行性。
本文将探讨一个革命性的解决方案——将大模型(LLMs)与形式化验证工具相结合,以解决传统旅行规划中存在的问题。这种方法不仅能够处理复杂的约束条件,还能够提供经过严格验证的旅行计划,确保每一项旅行安排都符合用户的具体要求。通过这一创新框架,我们能够实现更高效、更准确、更个性化的旅行规划,让每个人都能享受到定制化的旅行体验。
方法
究者们提出了一个框架,该框架利用LLMs来形式化地表述和解决旅行规划问题,将其视为一个可满足性模理论(SMT)问题。这一方法的核心在于,通过多次调用LLMs,完成从自然语言查询到JSON格式描述的转换、问题的公式化步骤生成,以及基于步骤的代码生成。当输入的查询不可满足时,LLMs还能够基于当前情况提出建议,并根据建议修改现有代码。

Figure 1框架是一个协作系统,涉及人类用户、大型语言模型(LLM)、SMT求解器以及生成的旅行计划。工作流程如下:
-
人类用户提出查询:以自然语言的形式,用户提出他们的旅行计划需求。
-
LLM翻译:LLM将用户的自然语言查询转换为JSON格式,这是一种结构化的数据处理格式,便于计算机解析和处理。
-
生成SMT问题步骤:LLM根