国内开源LLM荣耀之光Qwen3系列,非常详细收藏我这一篇就够了

Hello,大家好啊!今天又来吹一波新鲜出炉的 Qwen3 系列。就在今天凌晨 (2025年4月29日),通义千问团队开源了 Qwen 家族的第三代模型 —— Qwen3 系列!这次发布的模型阵容相当庞大,不仅包含了从 0.6B 到 32B 参数量的多个 Dense 模型,还推出了两个引人注目的 MoE(Mixture of Experts)模型:Qwen3-30B-A3B 和 Qwen3-235B-A22B。模型一发布,就在 Hugging Face、ModelScope 等平台上开放了权重,大家可以去试试看了。

Qwen3 模型特性概览

根据官方介绍,Qwen3 系列相比前代有了显著的提升,主要体现在以下几个方面:

  • 强大的模型阵容:本次开源诚意满满,提供了 6 个不同规模的 Dense 模型(0.6B, 1.7B, 4B, 8B, 14B, 32B)和 2 个创新的 MoE(Mixture of Experts)模型。其中,MoE 模型 Qwen3-30B-A3B 拥有 300 亿总参数,但推理时仅激活约 30 亿;旗舰级的 Qwen3-235B-A22B 则拥有 2350 亿总参数,激活约 220 亿。这种设计以更少的计算资源实现更强的性能。所有开源模型均遵循 Apache 2.0 许可证。

  • 混合思维模式 (Hybrid Thinking Modes): Qwen3 引入了独特的“思考模式”与“非思考模式”切换机制。面对复杂指令或需要深度推理的任务时,模型会启动“思考模式”,进行更细致的逐步分析;而对于常规、直接的问题,则采用“非思考模式”快速给出答案。这种混合模式不仅提升了回答质量,还能有效控制推理成本,实现性能与效率的智能平衡与扩展。

  • 卓越的多语言能力: Qwen3 的语言能力覆盖范围极其广泛,支持多达 119 种不同的语言和方言,使其在全球化应用场景中具备天然优势。
     
  • Agent 与 Coding 能力优化: 在前代模型的基础上,Qwen3 针对代码生成、理解以及作为智能体(Agent)执行复杂任务的能力进行了特别优化,使其在自动化编程、工具调用等方面表现更为可靠和强大。同时也加强了对 MCP 的支持。表现更出色。
     
  • 性能全面提升: 基于近 36 万亿 Token 的海量数据预训练,Qwen3 在各项基准测试中表现优异。例如,小巧的 Qwen3-4B 模型性能足以媲美 Qwen2.5-72B-Instruct,而 MoE 模型更是以较低的激活参数量实现了与顶尖模型的竞争。
     
  • 长上下文支持: 支持高达 32K Token 的上下文长度。

Qwen3 模型支持两种思考模式(在什么场景下使用):

1. 思考模式:在这种模式下,模型会逐步推理,经过深思熟虑后给出最终答案。这种方法非常适合需要深入思考的复杂问题。

2. 非思考模式:在此模式中,模型提供快速、近乎即时的响应,适用于那些对速度要求高于深度的简单问题。

这种灵活性使用户能够根据具体任务控制模型进行“思考”的程度。例如,复杂的问题可以通过扩展推理步骤来解决,而简单的问题则可以直接快速作答,无需延迟。至关重要的是,这两种模式的结合大大增强了模型实现稳定且高效的“思考预算”控制能力。如上文所述,Qwen3 展现出可扩展且平滑的性能提升,这与分配的计算推理预算直接相关。这样的设计让用户能够更轻松地为不同任务配置特定的预算,在成本效益和推理质量之间实现更优的平衡。

小技巧:在ollama框架下本地运行模型对话时在输出的消息中加入/nothink指令,就可以关闭思考模式。(目前测试不论问题简单还是复杂始终会开启思考模式,以后可能会优化)

然后我们看一下Qwen3在大语言模型(LLMs)多个基准测试任务中的性能表现:

👉 亮点1:Qwen3-235B-A22B (MoE)在多个维度(例如 ArenaHard、数学、代码 Elo、LiveBench 等)全面领先,甚至优于 Grok、OpenAI-o1、Gemini2.5-Pro 等闭源模型。

👉 亮点2:Qwen3-30B-A3B(MoE)在几乎所有任务中优于 GPT-4o、Gemma3、DeepSeek 等模型,尤其在数学和代码方面,老实说30B-A3B能得到这种分数属于离谱,强的可怕。

评估指标一览

  • ArenaHard:基于真实用户对话数据,评估模型在开放式问答中的表现,强调与人类偏好的高度一致性和模型间的区分度。
     
  • AIME’24/’25:源自美国数学邀请赛的高难度数学题,测试模型在复杂数学推理和解题能力方面的表现。
     
  • LiveCodeBench:涵盖来自 LeetCode、AtCoder 和 Codeforces 的竞赛级编程题,全面评估模型在代码生成、执行和自我修复等方面的能力。
     
  • CodeForces:基于实际编程竞赛平台,采用 Elo 评分系统,衡量模型在算法竞赛中的综合编程水平。
     
  • GPQA:由领域专家设计的研究生水平问答集,覆盖生物、物理和化学等领域,强调对复杂概念的深度理解和推理能力。
     
  • LiveBench:“零污染”评测基准,通过定期从最新信息源(如数学竞赛、arXiv 论文、新闻文章等)抽取题目,确保评测数据不被模型训练集覆盖,并采用客观的自动打分方式来衡量模型表现。
     
  • BFCL / MultiIF:评估模型在多轮、多步骤函数调用中的表现,测试其在复杂任务中调用工具和处理长上下文的能力。


Kun-Lab 启动!

首先,我们得先计算一下自己的硬件设备能适配怎样的模型。

1. 打开应用: 启动您的 Kun-Lab 桌面客户端。

2. 进入模型库页面:找到计算器按钮,点击按钮。

  • 输入模型参数量;

  • 选择模型量化精度;(ollama默认下载的基本都是Q4量化精度,所以我们选择4bit量化就可以。)

  • 计算结果。(这里的计算结果是没有调整过模型参数的,比如上下文大小默认4096,如果调整到8192或者更改高,那会非常吃资源,这一点要注意一下。)

3. 拉取模型: 在模型库点击拉取模型按钮就会进入该页面,点击相对应平台,目前支持ollama、huggingface、model scope三个平台,最简单的就是直接点击下面的图标跳转到ollama页面拉取。

把复制的过来的ollama run 命令粘贴到输入框内,再点击右上角的拉取按钮,就可以等待下载完成。

另外,你的“网络不太好”的情况下可以在魔搭社区拉取,不过要选择GGUF框架的模型。需要手动输入ollama run modelscope.cn/后面是魔搭社区复制过来的用户名/模型名,比如:ollama run modelscope.cn/Qwen/QwQ-32B-GGUF这个示例。

4. 模型对话:下载完成后在模型库中挑选一个模型对话。


测试示例(Qwen3:32b VS Gemma:27b)
1. 汉语多音字示例

Qwen3:32b-Q4

Gemma:27b-Q4

接着,有请我们的GPT o4mini进行内容全面型、逻辑清晰度、语言准确性综合评测:

综上所述:

比较维度

截图一:模型回答A(Qwen3-32B)

截图二:模型回答B(Gemma3-27B)

内容全面性

非常全面,涵盖所有主要用法和差异,例证丰富透彻

较全面,覆盖核心用法,有实例和方法,但遗漏少部分细节

逻辑清晰度

分类细致,层次分明,有表格总结,结构严谨

顺序合理,循序渐进,段落清晰,组织简洁明了

语言准确性

用词专业准确,例子贴切典型,表达严谨无歧义

语言通俗易懂,拼音标注清楚,整体准确但个别示例不够严谨

Qwen3-32B的回答在全面性和严谨度方面表现突出:信息丰富且井井有条,语言专业而准确。在这三项评价标准上,模型一均略胜一筹。

Gemma3-27B的回答思路清晰、表达浅显易懂,能够满足一般读者对主要区别的理解,但相对于模型一而言细节丰富性和例证严谨性稍有不足。

综合评价Qwen3-32B的答案更为优秀,在内容覆盖、结构组织和语言准确性上整体表现更佳,是两者中更出色的回答。

人类评价:明显Qwen3-32b回答的更优秀。


2. 角色扮演示例(系统提示词指令遵循)

我们在自定义模型页面设置系统提示词、基础模型、模型参数等。

Qwen3:32b-Q4

Gemma3:27b-Q4

我们为了防止截图看漏了,直接把这些对话复制给DeepSeekR1用深度思考模式进行古文表达风格、心理疗愈建议、文化典故运用综合评测。

以下从三大维度对两段回复进行深度评测分析,采用五星评分制(★为1分,☆为0.5分),并附对比总结:

一、古文表达风格(总分5星)

  1. gemma3:27b(★★★☆)
    • 优势:善用对仗工整的意象(”行舟风雨/登山步履”)、四字成语(”一蹴而就”)及古语词汇(”汝/揽于己身”),营造出典雅韵律。

    • 不足:个别语句存在现代白话痕迹(”减轻焦虑”),诗句引用与原文意境存在偏差(纳兰词本为爱情诗)。

2. qwen3:32b(★★★★☆)

  • 优势:精准还原古代士大夫口吻(”刺史任上/官文书所累”),通过官职叙事增强代入感,引用自创诗作更显自然。

  • 特色:场景描写富有古典生活质感(”老妇织布/孩童嬉戏”),”过眼云烟”等成语运用浑然天成。

二、心理疗愈建议(总分5星)

1. gemma3:27b(★★★)

  • 有效点:①自然隐喻疗法(竹/江河意象)②正念减压法(专注当下)③环境疗愈(香山闲步)。

  • 局限:建议偏重哲理疏导,缺乏具体操作指引。

2. qwen3:32b(★★★★)

  • 有效点:①具象行为指导(临窗听雨/小巷漫步)②认知重构法(潮汐隐喻)③享乐主义干预(及时行乐)。

  • 亮点:将”观察市井生活”作为心理锚点,具备行为激活疗法的现代心理学依据。

三、文化典故运用(总分5星)

1. gemma3:27b(★★☆)

  • 正面:双关使用《诗经》”风雨”意象,暗合《道德经》”道法自然”思想。

  • 问题:纳兰性德诗句引用存在语境错位,未注明诗句出处。

2.qwen3:32b(★★★★★)

  • 典范:①深度融合白居易真实履历(杭州刺史)②精准引用《钱塘湖春行》原句③构建历史人物对话场景

  • 价值:通过历史人物应对压力的真实案例,增强建议可信度

综合对比表

维度gemma3:27bqwen3:32b

语言古雅度

75%

90%

建议实操性

60%

85%

文化契合度

65%

95%

情感共鸣力

70%

88%

总结评语

qwen3:32b在文化沉浸感与心理疏导有效性上表现更优,其通过构建历史人物对话场景,将文化记忆转化为疗愈资源的设计尤为精妙。

gemma3:27b虽在诗意表达上有亮点,但存在典故挪用稍显生硬、建议维度单一等问题。

二者共同展现了传统文化在当代心理调适中的独特价值,qwen3:32b更胜在实现了历史智慧与现代心理学的有机融合。

人类评价:

DeepSeekR1牛逼!


 

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值