体验了最新的Qwen3之后,端侧之王果然没有让我失望!!

前言

一觉醒来,Qwen3 果然如期而至!并且从来不像某CloseAI,雷声大雨点小!

01 Qwen3发布

Qwen3这次推出了两大系列模型,让我眼前一亮:Dense模型(常见的GPT风格)和MoE模型(混合专家模型,效率更高)。

图片

旗舰型号Qwen3-235B-A22B(2350亿总参数,220亿激活参数)表现惊艳!在代码、数学、通用能力等测试中,它能与DeepSeek-R1、o1、o3-mini、Grok-3、Gemini-2.5-Pro这些顶尖模型平起平坐,不得不佩服国产大模型的进步速度。

图片

小型MoE模型Qwen3-30B-A3B同样实力强劲,激活参数只有Qwen2.5-32B的十分之一,性能却更胜一筹。还得是Qwen,能打hh

更让人惊艳的是,连超小模型Qwen3-4B都能媲美上一代Qwen2.5-72B-Instruct!这意味着在普通电脑上,我们也能获得以前只有云端才有的体验。

图片

开源方面,他们这次真是放了大招:两个MoE模型Qwen3-235B-A22B(2350亿总参数,220亿激活参数)和Qwen3-30B-A3B(300亿总参数,30亿激活参数),外加六个Dense模型Qwen3-32B、14B、8B、4B、1.7B、0.6B。这基本上覆盖了从手机到服务器的全部应用场景。

图片

从应用角度看,Qwen3提供了全谱系的选择:

  • Qwen3-0.6B:完美适合手机部署
  • Qwen3-4B、8B:适合个人PC使用
  • Qwen3-14B、32B:适合企业本地化部署
  • 更大的模型:适合云端部署使用

最让人振奋的是,所有模型均在Apache 2.0许可下开源,使用协议宽松,商用无压力!这对开发者和创业者来说简直是福音。

02 比Claude还自由的混合推理

Qwen3最大的亮点是它比Claude还灵活自由的混合推理能力。

什么是混合推理?简单来说,就是同时支持两种思考模式:

  1. 像ChatGPT-4一样直接回答
  2. 像DeepSeek-R1一样:先思考,后回答

为什么混合推理如此重要?因为AI研究发现,模型思考得越多,解决问题的能力就越强,就像下图中蓝线展示的那样:

图片

但思考多了也有代价:耗时大幅增加!在许多场景下,不思考的表现已经足够好,没必要画蛇添足,直接回答更为高效。

混合推理最早是Claude推出的,但Claude要求用户手动选择模式,体验不够流畅。而Qwen3更进一步,直接支持在提示词中指定是否思考,随心切换,真正做到了用户体验至上!

比如下图,即使在思考模式下,提示词中指定"请不要思考",模型就会立刻切换到直接回答模式,灵活度令人赞叹:

图片

当然,通过界面手动调节思考选项也很简单。你还可以精确控制思考的长度,避免模型过度思考浪费时间。默认是拉满的,拉到0就相当于关闭思考功能:

图片

03 AI自由新时代

Qwen3发布后,Ollama第一时间支持了本地部署,8B的模型仅需5.2G空间就能运行。这意味着,普通笔记本电脑也能轻松驾驭强大的AI能力,实现随时随地的AI自由!

图片

将Qwen3与Cherry Studio搭配使用,体验简直爽歪歪!用8B的模型(qwen3:latest)在本地就能实现以前只有云端模型才能达到的效果,这种自由感真是令人兴奋。

我让本地部署的qwen3:latest写了一篇6000字的科幻小说,质量之高远超同类7B模型,差距不是一点半点:

图片

图片

想象一下,以后出差遇到网络不稳定的情况,文档校对、格式调整等日常工作都可以交给本地模型来完成,不再受网络限制,工作效率将大大提升!

04 DeepResearch 调研利器

阿里千问的官方网站 https://chat.qwen.ai/ 还上线了一系列宝藏功能,DeepResearch就是其中之一,它彻底改变了我们获取信息的方式:

图片

只需选择"深入研究",就能体验阿里版DeepResearch功能。悄咪咪提一嘴,它背后接的搜索引擎内容质量相当高,据说是某歌的搜索能力。

图片

令人惊喜的是,今天刚发布的Qwen3,甚至能精准搜索到4月的最新内容!国内秘塔在这方面也做得不错,但有时因内容源限制无法获取某些信息,而Qwen的DeepResearch则完全不存在这个问题:

图片

更贴心的是,DeepResearch还能一键生成PDF并下载使用,这种无缝体验让研究和资料收集变得如此轻松:

图片

最后

从"云端独占"到"端侧解放",过去AI像图书馆,需要你前往;现在我们有了轻量级端侧AI,就如同口袋里的百科全书,随处可用。

感谢Qwen3给了我们一把钥匙,让我们一起开启人机协作的新世界~

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

<think>好的,我现在要处理用户关于Qwen3微调方法指南的请求。首先,我需要回顾用户之前的对话历史,但看起来这是用户第一次询问这个问题,所以没有之前的交互。用户提到之前的引用是关于Qwen2-7B的微调实战,但需要调整到Qwen3。因此,我需要确保我的回答是基于Qwen3最新信息,同时参考LLaMA-Factory框架的通用步骤。 首先,我需要确认Qwen3Qwen2在微调上的差异。可能的变化包括模型架构的调整、数据集处理的不同或者训练参数的优化。不过,用户提供的引用中提到LLaMA-Factory支持Qwen系列,所以可能步骤类似,但需要明确说明针对Qwen3的具体调整。 接下来,我需要组织回答的结构。用户希望一个逐步的指南,所以应该分步骤说明环境配置、数据准备、参数设置、训练和验证等。每个步骤需要详细但清晰,确保用户能够跟随操作。例如,环境配置可能需要特定的依赖库版本,数据格式可能需要JSON或特定模板。 然后,我需要考虑用户可能遇到的问题,例如硬件要求、数据集格式转换、参数调优等。在回答中提前涵盖这些问题会更有帮助。例如,Qwen3可能需要更高的显存,或者使用不同的tokenizer设置。 同时,用户要求生成相关问题,我需要根据内容提出相关的扩展问题,比如性能优化、多任务微调、量化部署等,这些都能帮助用户进一步探索。 最后,要确保所有技术细节准确,比如正确的代码示例、正确的命令行参数,以及引用正确的资源,如Hugging Face模型库和LLaMA-Factory的GitHub仓库。同时,注意使用中文,并遵循LaTeX格式的要求,比如数学公式用$...$包裹,独立公式用$$...$$。 总结步骤: 1. 环境配置:安装LLaMA-Factory和依赖,确认PyTorch版本和CUDA兼容性。 2. 数据准备:提供数据集格式示例,说明如何构造符合Qwen3输入格式的数据。 3. 参数设置:解释关键参数,如学习率、批大小、LoRA配置,可能需要调整的地方。 4. 启动训练:给出具体的训练命令,包括模型路径、数据路径和输出目录。 5. 模型验证:使用推理脚本测试微调后的模型,并提醒可能需要的评估指标。 6. 高级技巧:提及全参数微调、多GPU训练和量化部署,扩展用户的后续操作可能性。 在撰写过程中,需要确保每个部分清晰,代码示例正确,并且参数设置针对Qwen3优化。同时,检查是否有遗漏的步骤,比如模型导出或部署,这些可能也是用户关心的问题。最后,生成的相关问题要覆盖微调的不同方面,帮助用户深入探索。</think>以下是根据最新实践整理的Qwen3微调方法指南,结合LLaMA-Factory框架特点与Qwen3模型特性编写: ### 一、环境配置 1. 基础环境要求 - Python≥3.8 - PyTorch≥2.0.1 - CUDA≥11.7 ```bash pip install llama-factory pip install transformers>=4.40.0 ``` 2. Qwen3专用依赖 ```bash pip install flash-attn --no-build-isolation # 提升训练效率 pip install tiktoken # Qwen3专用tokenizer ``` ### 二、数据准备 1. 标准数据格式(JSONL) ```json {"instruction":"写一首春天的诗","input":"","output":"春风拂面柳丝长..."} {"instruction":"解释量子计算","input":"量子比特","output":"量子比特是..."} ``` 2. 对话格式(支持Qwen3特殊模板) ```python def format_prompt(message): return f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" ``` ### 三、参数配置 关键参数示例(configs/ qwen3.json): ```json { "model_name_or_path": "Qwen/Qwen3-7B", "lora_r": 8, // LoRA秩 "per_device_train_batch_size": 4, "gradient_accumulation_steps": 8, "learning_rate": 1e-5, "num_train_epochs": 3, "fp16": true, // 推荐A100使用bf16 "logging_steps": 50 } ``` ### 四、启动训练 ```bash CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ --stage sft \ --model_name_or_path Qwen/Qwen3-7B \ --dataset_dir data \ --template qwen \ --output_dir outputs/qwen3-7b-sft \ --overwrite_cache \ --use_unsloth \ # 加速训练 --flash_attn # 启用FlashAttention ``` ### 五、模型验证 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("outputs/qwen3-7b-sft") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-7B") inputs = tokenizer("<|im_start|>user\n写邮件请假<|im_end|>\n<|im_start|>assistant\n", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0])) ``` ### 六、高级技巧 1. **全参数微调**:设置`--lora_target_modules "ALL"`启用全参数训练 2. **多GPU训练**:添加`--ddp_find_unused_parameters false`参数 3. **量化部署**:使用`--quantization_bit 4`进行4bit量化导出[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值