多agent代理的7种设计模式

一共是7种设计模式,先看一下总图:

  1. 协调者/分发模式 (Coordinator/Dispatcher Pattern)

    • 例子: 智能客服中心。当用户提出一个复杂问题时,“协调者”智能体首先理解问题的类型(例如,账单问题、技术故障、产品咨询)。然后,它将该问题“分发”给专门处理该领域的“专家”智能体(如账单专家、技术支持专家、产品知识专家)。协调者不直接解决问题,而是确保问题被路由到最合适的处理者那里,并可能跟踪问题的解决状态。

  2. 顺序管道模式 (Sequential Pipeline Pattern)

    • 步骤1 (输入验证): 第一个智能体接收原始数据(如销售记录),并验证其格式是否正确、数据是否完整。

    • 步骤2 (数据处理与分析): 第二个智能体接收验证后的数据,进行统计分析、计算关键指标(如月度增长率、销售额)。

    • 步骤3 (结果报告): 第三个智能体接收分析结果,将其格式化为人类可读的报告(如图表、摘要),并可能将其发送给相关人员。每一步的输出是下一步的输入,按顺序执行。

    • 例子: 自动化报告生成系统。

  3. 并行扇出/聚合模式 (Parallel Fan-Out/Gather Pattern)

    • 例子: 旅游行程规划。用户输入目的地和日期,“扇出”阶段启动多个并行运行的智能体:一个搜索机票,一个搜索酒店,一个搜索当地活动和景点。这些智能体同时独立工作以提高效率。当所有智能体完成搜索后,进入“聚合”阶段,另一个智能体将收集到的机票、酒店和活动信息整合成一个完整的行程计划推荐给用户。

  4. 层级任务分解模式 (Hierarchical Task Decomposition)

    • 顶层 (报告撰写者): 负责最终论文的整体结构和风格。

    • 中层 (研究助手): 接受顶层指令,将任务分解为更小的部分,例如“文献综述”、“数据分析”、“方法论描述”。它委派这些子任务给底层专家。

    • 底层 (专家): 多个智能体分别执行具体任务,如“网络搜索”智能体负责查找相关文献,“数据分析”智能体处理实验数据,“文本摘要”智能体总结文献要点。底层完成后将结果汇报给中层,中层整合后再提交给顶层完成最终论文。

    • 例子: 撰写一篇研究论文。

  5. 审查/批评模式 (Review/Critique Pattern)

    • 例子: AI辅助内容创作。一个“创意写作”智能体负责生成文章初稿。稿件完成后,交给一个“事实核查与风格审查”智能体。该审查智能体检查文章中的事实准确性、语法错误、逻辑连贯性以及是否符合预设的风格要求(如正式、幽默)。审查结果(可能包含修改建议或错误标记)反馈给写作智能体或直接呈现给用户。

  6. 迭代优化模式 (Iterative Refinement Pattern)

    • 例子: 软件代码优化。一个“代码生成”智能体根据需求初步生成一段代码。然后,一个“性能测试与静态分析”智能体运行测试用例,检查代码的性能瓶颈、潜在bug和代码规范符合度。测试结果反馈给“代码优化”智能体,该智能体根据反馈修改代码。这个“生成-检查-优化”的循环不断进行,直到代码达到预定的质量标准(如性能指标、测试通过率)才退出循环,输出最终优化后的代码。

  7. 人机协作模式 (Human-in-the-Loop Pattern)

    • 例子: 医疗影像辅助诊断。AI智能体分析医学影像(如X光片、CT扫描),识别出可能的异常区域,并给出初步诊断建议和置信度。由于医疗诊断的严肃性,系统会将AI的分析结果和标记的区域提交给人类医生(操作员)。医生审查AI的建议,结合自己的专业知识做出最终诊断决策。或者,在模棱两可的情况下,AI请求人类专家提供额外信息或判断,然后基于人类的输入继续处理。

希望这些更具体的例子能帮助你更好地理解这七种模式的应用场景。

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值