从0到1搭建自己的知识库(AI智能体)看这篇就够了!赶紧收藏!

一、说明

这篇文章主要通过"扣子"平台构建了一个智能体应用程序,帮助大家在平时的工作生活当中调用自己的智能体知识库,通过积累整理平时的知识,大大提高工作效率。

二、什么是扣子?

"扣子"是由字节跳动公司于2024年2月1日推出的一款集成AI智能体开发平台。它开创了国内AI聊天机器人快速开发的先河。

▲扣子首页

下面是扣子平台创建Bot的页面,对于初次使用的伙伴来说功能确实很多,但不知道从何下手搭建智能体。

▲扣子智能体搭建页面

上文提到的 Agent (智能体)是由4个关键部分构成,他们是:规划(Planning)、记忆(Memory)、工具(Tools)、行动(Action)

▲由LLM驱动的智能体系统

我们可以从这四个核心要素出发,对"扣子"的智能体创建界面进行详细解析,如下所示:

▲对智能体搭建页面进行标注

通过细致的标注,读者可以清晰地看到,构建一个智能体实际上是在配置四个核心要素。具体来说:

  1. 人设与回复逻辑:这涉及到Prompt的设置,它对应于智能体的规划阶段(Planning)。

  2. 插件、工作流、图像流等技能:这些技能的配置,以及对文本、表格等知识的整合,属于工具(Tools)的范畴。

  3. 变量、数据库、长期记忆:这些配置构成了智能体的记忆(Memory)部分。

  4. 预览与调试:最后,预览与调试环节则对应于智能体的执行(Action)阶段。

接下来,我将通过一个实际案例,展示如何利用"扣子"平台来搭建智能体。

三、知识库助理

在日常的工作中,经常会产生大量的知识信息,如:会议纪要、产品思考、读书笔记等,目前作者统一通过笔记工具进行管理。

▲笔记工具储存的知识库

然而,随着知识量的不断增长,仅仅依靠传统的分类和标签系统,我们发现要迅速定位到所需的信息或知识点变得越来越困难。在某些情况下,我们不得不逐个打开笔记文件来搜索内容,这无疑大大耗费了我们宝贵的时间。

那么,是否有可能建立一个个性化的知识库助手,通过简单的提问,就能得到精确且针对性的答案呢?这样的助手将使我们的知识检索过程变得更加高效和顺畅。

我们可以通过COZE来试试:

1、创建Bot

首先,在扣子的首页,点击“创建Bot”,Bot 就是Agent智能体(下文统称为“智能体”)。简单描述Bot的名称和相关的功能介绍,我们称为“知识库助手”。

▲创建Bot

2、配置智能体人设

然后,我们就可以定义好智能体的人设(即Prompt),在写Prompt的过程中,简单描述角色、要求,再利用扣子(coze)的AI优化功能进行相关的完善。

▲通过扣子AI功能优化智能体人设

3、创建知识库

扣子支持通过文本、表格、图片等文件类型创建知识库,我们选择文本格式(路径为:点击“个人空间”—“知识库”—“创建知识库”)。

▲选择导入知识文件类型与方式

"扣子"平台针对文本数据格式,提供了丰富的导入途径,涵盖了本地文档、网络数据源、Notion和飞书等多种选择。以我个人的实践为例,我习惯使用笔记软件将资料导出成DOC文件,然后导入到"扣子"平台,以此构建起我自己的专属知识库。

▲导入本地知识文件

文件导入成功后,再对知识进行切片和分段,支持“自动分段清洗”与“自定义”两种方式,通过分段处理后有助于提高检索的精准度。

▲对本地知识分段

现在,知识库创建完成了。

4、搭建工作流

智能体在回答问题时,主要依赖于本地知识库进行分析和推理,这样就无需接入外部的插件工具。然而,如果智能体仅依赖单一的本地知识库,可能会提供一些与问题不相关的答案。为了提高回答的准确性,我们需要设计并构建一个工作流系统。(路径为:点击“个人空间”—“工作流”—“创建工作流”)。

▲创建工作流

工作流可以理解为:通过选择不同的节点把任务拆解为多个步骤,让智能体按照预设工作流程对任务进行分步处理,从而提升对复杂任务的处理效率。

我们可以在左侧选择节点后点击“+”,把节点添加到右侧工作流编辑区,如下图所示:

▲工作流编辑区域

1)开始节点

“开始”节点会接受我们输入的问题,这里把输入变量名称设置为“question”。

▲开始节点

2)知识库节点

“知识库” 节点会从本地知识库中检索出与问题相关的知识片段,我们把刚才创建好的知识库添加到该节点中。

▲知识库节点

3)大模型节点

在“知识库”节点获取到知识片段后,结合原问题组装成提示词再送到“大模型”节点进行处理。此节点支持选择不同的大模型,如:豆包、通义千问、kimi、智谱等。

▲大模型选择

在“提示词”这一部分,定义好角色、任务与要求,可以让大模型更高效地处理任务。

▲大模型节点

4)结束节点

在大模型处理后,通过“结束”节点展示答复,完成任务。

▲结束节点

编辑好工作流后,点击右上方按钮对工作流进行【试运行】。

▲对工作流进行试运行

然后,输入相关问题后,验证工作流是否可以成功运行,成功后点击【发布】,即可完成工作流搭建。

▲运行成功

5、测试和发布

下面,我们在智能体搭设中,添加上面的工作流。

▲添加工作流

然后,在右侧的预览区域与调试区域中,对智能体进行调试。

▲测试智能体

为了提高与智能体的对话体验,我们还可以配置如:开场白、快捷指令、角色语音等个性化功能,让智能体更“拟人化”。

▲智能体的个性化设置

最后,点击在右上方的【发布】,选相应的发布平台即可,扣子支持了豆包、飞书、抖音、微信公众号等等多个平台。

▲智能体发布

现在,一个自己的**【知识库助手】**就搭建完成。

四、结语

“知识库助手”只是智能体搭建中,最小的闭环应用,按照相同的思路,我们可以构建出更加复杂且强大的智能体,后面有机会再跟大家分享。

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 使用大语言模型构建制造业AI知识库智能体的方法 #### 构建基础框架 为了创建一个有效的制造业AI知识库智能体,首先需要建立坚实的基础框架。这涉及到选择合适的大规模预训练语言模型作为核心组件,并针对具体应用场景进行微调。大规模预训练模型拥有强大的自然语言处理能力,可以在理解复杂语境方面提供支持。 ```python from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments model_name = "bert-base-uncased" model = AutoModelForSequenceClassification.from_pretrained(model_name) training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, logging_dir='./logs', ) trainer = Trainer( model=model, args=training_args, ) ``` #### 数据准备与标注 高质量的数据集对于训练成功的AI知识库至关重要。数据应当覆盖广泛的制造领域话题,包括但不限于生产流程、设备维护、质量控制等方面的内容。同时,还需要对这些数据进行细致的人工标注工作,以便让机器学习算法能更精准地捕捉到专业知识点之间的关联性[^1]。 #### 集成工业逻辑代码生成功能 借助于先进的编程接口和技术栈的支持,在特定行业场景下自动生成所需的工业逻辑代码是一项非常有价值的功能。这种自动化过程不仅提高了工作效率,还减少了人为错误的发生几率。例如,可以通过API调用来实现交互式界面的设计、数据库查询脚本的编写以及物理仿真模型的搭建等工作流环节。 #### 实现持续迭代优化机制 为了让所构建的知识库始终保持最新状态并适应快速变化的实际需求,必须引入一套完善的反馈循环体系来驱动系统的自我进化。一方面要定期收集来自一线操作人员的意见建议;另一方面则应充分利用历史运行记录来进行离线分析评估,从而找出潜在改进空间所在之处。 #### 应用实例展示 假设现在有一个关于汽车零部件加工车间内的温度监控预警系统项目正在规划当中。此时就可以考虑运用上述提到的技术手段建立起专门面向此类业务领域的AI知识库智能体1. 收集整理有关温控装置原理说明文档资料; 2. 对其进行全面而深入的理解解析之后录入至平台内部存储结构之中; 3. 利用NLP技术提取关键特征参数用于后续预测判断依据; 4. 结合实时传感器采集回来的信息做出及时响应措施提示给相关人员参考执行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值