机器学习、深度学习和大模型,经常傻傻的分不清,这里将结合图文跟大家讲清楚。
假设我们有一个文本情感分析的任务,需要判断一段文本的情感是正面、负面还是中性。下面分别是机器学习、深度学习和大模型的实现方式。
1、机器学习
(1)场景:机器学习一般要针对某个特定场景来进行训练,比如以上的“判断一段文本的情感是正面、负面还是中性”就是典型的一个机器学习场景。
(2)输入:机器学习一般只接收结构化数据的输入,如果是非结构化数据,也要转化为结构化数据,比如本案例中虽然原始输入的是一些文本,但真正输入到模型进行训练的数据已经被转化成了结构化的特征向量,如上图中的[[1, 0], [1, 1], [1, 0], [0, 1]],每一行代表的是一段文本输入转化成的的结构化输入,这里一共有四个记录。
(3)特征向量:机器学习的特征变量是明确的,主要依赖人工经验选择确定,比如本案例中设计出来的特征变量有两个,分别是“正面词数量”,“负面词数量”,要判断一段文本是正面还是负面,一般首先会想到通过分词找到正负面的词,然后以这些词的频率作为x变量,因为这是最相关的。
(4)输出:对输出·文本的正负情感进行人工标识,作为y,比如本案例中[1, 0, 1, 0],代表输入的文本的情感分别为正、负、正、负。
(5)模型训练:要训练模型,需要选择合适的机器学习算法,这里选择的经典算法SVM,然后基于前面的输入和输出进行训练,最终得到一个SVM模型。
(6)推理:下图显示了机器学习推理过程,输入一段符合场景的文本,该模型就可以对文本的情感进行预测。
2、深度学习
(1)场景:深度学习跟机器学习类似,一般要针对某个特定场景来进行训练,假设是同样的文本情感识别场景。
(2)输入:深度学习是在文本,图形识别中发展起来的,因此特别擅长于处理图文等非结构化数据,跟机器学习不同,深度学习不需要显式构建特征变量,本案例中只需要将文本转化成机器能处理的数字即可,比如将输入的两段文本映射成[1, 2, 3, 4, 0]、[1, 5, 2, 3, 4],模型训练接受的输入是原始的映射数据,不是特征向量。
(3)特征向量:相比机器学习,深度学习的特征表示是在训练中自己生成的,不需要在输入阶段人工显式构造。
(4)输出:跟机器学习类似,对输出文本的正负情感进行人工标识,作为y,比如本案例中[1, 0],代表输入的文本的情感分别为正、负。
(6)推理:下图显示了深度学习推理过程,输入一段符合场景的文本,该模型就可以对文本的情感进行预测,跟机器学习基本一致。
3、大模型
(1)场景:大模型跟深度学习、机器学习不同,一般是指预训练模型,其不针对某个特定场景来进行训练,致力于学习语言的一般规律和知识,可以适用于所有的通用场景。
(2)输入输出:在预训练阶段使用大规模未标注文本数据作为输入x,这些文本不需区分特定场景,也无需标注y。
(3)特征向量:大模型跟深度学习的特征表示一样,是在训练中自己生成的,不需要在输入阶段人工显式构造。
(4)推理:下图显示了大模型推理过程,其适用于任意场景,输入任意文本,预训练模型都可以基于输入的文本进行生成式回复。
(5)微调:假如大模型的预训练模型不足以满足某特定任务的要求,那么还可以针对特定任务再进行微调训练,微调训练过程等同于深度学习,即构造针对特定任务的x,y来进行深度学习的训练。如果说深度学习的特征学习和任务训练是同时进行的,那么大模型的特征学习(预训练)和任务训练(微调)是分阶段进行的。
零基础如何学习大模型 AI
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
⑤AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。
⑥AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~