多模态大模型技术方向和应用场景

多模态大模型(Multimodal Large Language Models,MLLM)是一种结合了大型语言模型(LLM)和大型视觉模型(LVM)的深度学习模型,它们能够处理和理解多种类型的数据,如文本、图像和音频,从而在跨模态任务中展现出卓越的性能。

核心特点

对于多模态输入-文本输出的典型 MLLM,其架构一般包括编码器连接器以及 LLM。如要支持更多模态的输出(如图片、音频、视频),一般需要额外接入生成器,如下图所示:

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈
MLLM 架构图

模态编码器负责将原始的信息(如图片)编码成特征,连接器则进一步将特征处理成LLM 易于理解的形式,即视觉 Token。LLM 则作为“大脑”综合这些信息进行理解和推理,生成回答。目前,三者的参数量并不等同,以 Qwen-VL[1]为例,LLM 作为“大脑”参数量为 7.7B,约占总参数量的 80.2%,视觉编码器次之(1.9B,约占 19.7%),而连接器参数量仅有 0.08B。

对于视觉编码器而言,增大输入图片的分辨率是提升性能的有效方法。一种方式是直接提升分辨率,这种情况下需要放开视觉编码器进行训练以适应更高的分辨率,如 Qwen-VL[1]等。另一种方式是将大分辨率图片切分成多个子图,每个子图以低分辨率送入视觉编码器中,这样可以间接提升输入的分辨率,如 Monkey[2]等工作。

对于预训练的 LLM,常用的包括 LLaMA[3]系列、Qwen[4]系列和 InternLM[5]系列等,前者主要支持英文,而后两者中英双语支持得更好。就性能影响而言,加大 LLM 的参数量可以带来显著的性能增益,如 LLaVA-NeXT[6]等工作在 7B/13B/34B 的 LLM 上进行实验,发现提升LLM 大小可以带来各 benchmark 上的显著提升,在 34B 的模型上更涌现出 zero-shot 的中文能力。除了直接增大 LLM 参数量,近期火热的 MoE 架构则提供了更高效实现的可能性,即通过稀疏计算的方式,在不增大实际计算参数量的前提下提高总的模型参数量。

相对前两者来说,连接器的重要性略低。例如,MM1[7]通过实验发现,连接器的类型不如视觉 token 数量(决定之后 LLM 可用的视觉信息)及图片的分辨率(决定视觉编码器的输入信息量)重要。

数据与训练

MLLM 的训练大致可以划分为预训练阶段指令微调阶段对齐微调阶段。预训练阶段主要通过大量配对数据将图片信息对齐到 LLM 的表征空间,即让 LLM 读懂视觉 Token。指令微调阶段则通过多样化的各种类型的任务数据提升模型在下游任务上的性能,以及模型理解和服从指令的能力。对齐微调阶段一般使用强化学习技术使模型对齐人类价值观或某些特定需求(如更少幻觉)。

影响对齐的效果。后来的工作则探索使用更干净、文本内容更丰富的数据做对齐。由于数据规模受限,其包含的世界知识也是有限的,比如是否能够识别出图像中的建筑为广州塔。此类世界知识通常储备于大规模的粗粒度图文对中。

第二阶段的微调数据一方面可以来源于各种任务的数据,如 VQA 数据、OCR 数据等,也可以来源于 GPT-4V 生成的数据,如问答对。虽然后者一般能够生成更复杂、更多样化的指令数据,但这种方式也显著地增加了成本。值得一提的是,第二阶段的训练中一般还会混合部分纯文本的对话数据,这类数据可以视为正则化的手段,保留 LLM 原有的能力与内嵌知识。

第三阶段的数据主要是针对于回答的偏好数据。这类数据通常由人工标注收集,因而成本较高。近期出现一些工作使用自动化的方法对来自不同模型的回复进行偏好排序,如 Silkie[9]通过调用 GPT-4V 来收集偏好数据。

1. 模态融合:MLLM通过融合不同模态的数据,如图像和文本,增强了模型对信息的理解和处理能力。
2. 跨模态表示学习:MLLM学习跨模态数据之间的关联,实现更深层次的语义理解。
3. 端到端训练:MLLM通过模态对齐技术,实现了不同模态间的有效整合。

技术方向

多模态幻觉的研究主要关注模型生成的回答与图片内容不符的问题。视觉和文本本质上是异构的信息,完全对齐两者本身就具有相当大的挑战。增大图像分辨率和提升训练数据质量是降低多模态幻觉的两种最直观的方式,此外我们仍然需要在原理上探索多模态幻觉的成因和解法。例如,当前的视觉信息的 Token 化方法、多模态对齐的范式、多模态数据和 LLM 存储知识的冲突等对多模态幻觉的影响仍需深入研究。

多模态上下文学习技术为少样本学习方法,旨在使用少量的问答样例提示模型,提升模型的few-shot 性能。提升性能的关键在于让模型有效地关注上下文,并将内在的问题模式泛化到新的问题上。以 Flamingo[10]为代表的工作通过在图文交错的数据上训练来提升模型关注上下文的能力。目前对于多模态上下文学习的研究还比较初步,有待进一步探索。

多模态思维链的基本思想是通过将复杂的问题分解为较简单的子问题,然后分别解决并汇总。相较于纯文本的推理,多模态的推理涉及更多的信息来源和更复杂的逻辑关系,因此要复杂得多。当前该方面的工作也比较少。

LLM 辅助的视觉推理方法探索如何利用 LLM 强大的内嵌知识与能力,并借助其他工具,设计各种视觉推理系统,解决各种现实问题。相比于通过端到端训练获得单一模型,这类方法一般关注如何通过免训练的方式扩展和加强 LLM 的能力,从而构建一个综合性的系统。

应用场景

多模态大模型作为人工智能领域的重要研究方向之一,通过模态融合和跨模态表示学习技术,能够更好地处理和理解跨模态数据,为人工智能领域的发展带来新的机遇和挑战。随着技术的不断成熟和应用场景的不断拓展,多模态大模型将在各个领域发挥越来越重要的作用。

1. 多模态情感分析:结合文本、图像、音频等多种模态的数据进行情感分析,例如识别社交媒体上用户的情绪状态。
2. 多模态问答系统:利用文本、图像等多种数据模态来回答用户提出的问题,例如结合图像和文本来回答关于特定场景的问题。
3. 跨模态推荐系统:结合用户的文本描述、点击行为、图像偏好等多种数据模态来进行个性化推荐,提高推荐系统的准确性和用户体验。
4. 多模态翻译:结合文本和图像等多种数据模态进行跨语言翻译,例如将图像中的文字翻译成其他语言。
5. 智能辅助:多模态大模型还可以用于智能辅助领域,例如辅助盲人识别周围环境的图像信息、识别声音中的指令等。
6. 办公自动化:在办公领域,多模态大模型可以应用于智能文档处理、会议记录、语音助手等,通过自然语言理解和生成技术,辅助用户完成复杂的办公任务。
7. 电子商务:在电商领域,多模态大模型可用于商品推荐、智能客服、虚拟试衣等场景,通过分析用户的购物历史和偏好,为用户提供个性化的购物体验。
8. 娱乐产业:多模态大模型在娱乐产业中的应用包括游戏设计、虚拟偶像、电影制作等,通过生成高质量的图像和视频内容,为娱乐产业带来全新的创作方式和商业模式。
9. 教育领域:在教育领域,多模态大模型可用于智能辅导、在线课堂、虚拟实验室等场景,提供个性化的学习资源和互动体验,帮助学生更好地掌握知识和技能。
10. 医疗健康:在医疗健康领域,多模态大模型可用于医疗影像分析、疾病诊断、药物研发等场景,通过处理和分析大量的医疗数据,为医生提供更准确的诊断建议和治疗方案。

挑战和未来方向

针对 MLLM 的研究现状,我们进行了深入思考,将挑战与可能的未来发展方向总结如下:

  • 现有 MLLM 处理多模态长上下文的能力有限,导致模型在长视频理解、图文交错内容理解等任务中面临巨大挑战。以 Gemini 1.5 Pro 为代表的 MLLM 正在掀起长视频理解的浪潮,而多模态图文交错阅读理解(即长文档中既有图像也有文本)则相对空白,很可能会成为接下来的研究热点。

  • MLLM 服从复杂指令的能力不足。例如,GPT-4V 可以理解复杂的指令来生成问答对甚至包含推理信息,但其他模型这方面的能力则明显不足,仍有较大的提升空间。

  • MLLM 的上下文学习和思维链研究依然处于初步阶段,相关的能力也较弱,亟需相关底层机制以及能力提升的研究探索。

  • 开发基于 MLLM 的智能体是一个研究热点。要实现这类应用,需要全面提升模型的感知、推理和规划能力。

  • 安全问题。MLLM 容易受设计的恶意攻击影响,生成有偏的或不良的回答。该方面的相关研究也仍然欠缺。

  • 目前 MLLM 在训练时通常都会解冻 LLM,虽然在训练过程中也会加入部分单模态的文本训练数据,但大规模的多模态和单模态数据共同训练时究竟对彼此互有增益还是互相损害仍然缺乏系统深入的研究。

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

### 多模态模型多模态大模型简介 **多模态模型**是指能够处理多种不同类型数据(如文本、图像、音频等)的机器学习模型。传统的单一模态模型只能处理一种类型的数据,例如仅能识别图片或分析文字内容;而多模态模型通过整合来自不同来源的信息,在更丰富的上下文中理解生成信息。 **特点包括但不限于:** 1. **跨领域融合能力**:可以同时接收并理解视觉元素与语言描述; 2. **增强感知质量**:利用更多信息渠道提高对环境的认知精度; 3. **应用场景广泛**:适用于自动驾驶车辆决策系统、医疗影像诊断辅助工具等多个行业场景。 随着技术进步特别是深度学习算法的发展,出现了更为复杂的结构——即所谓的“**多模态大模型**”。 所谓的大模型通常指那些拥有海量参数规模,并且经过大规模训练集充分预训练过的神经网络架构。当这种大型框架被应用于构建支持多源异构输入端口的任务解决方案时,则被称为"多模态大模型". 它们具备更强的学习能力更高的泛化性能,在解决实际复杂任务方面展现出巨大潜力. 为了有效设计出高效的多模态大模型,研究人员需要克服一系列挑战,比如如何合理地将各种形式的数据映射到统一表示空间内以便于联合建模;怎样优化计算资源分配以适应超大规模参数量带来的需求增长等等. 总之,无论是对于科研探索还是工业应用而言,研究发展高性能的多模态(大)模型都是极具价值的方向之一.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值