什么是MCP(模型上下文协议)?
MCP[1](Model Context Protocol,模型上下文协议)是由Anthropic公司提出的一种标准化接口,用于向大型语言模型(LLMs)提供结构化的实时上下文信息。
核心功能
上下文数据注入(Contextual Data Injection)
MCP允许你将外部资源(例如文件、数据库行或API响应)直接注入到提示词或工作内存中。所有数据都通过标准化接口传输,使得你的大型语言模型(LLM)保持轻量且整洁。
函数路由与调用(Function Routing & Invocation)
MCP还支持模型动态调用工具。你可以注册如 searchCustomerData
或 generateReport
等功能,LLM可按需调用它们。就像给AI配备了一套工具箱,但无需将工具硬编码进模型内部。
提示词编排(Prompt Orchestration)
无需将所有细节堆进提示词中,MCP能够动态组装关键上下文。它支持模块化、实时构建提示词——更智能的上下文、更少的token、更优的输出。
实施特性(Implementation Characteristics)
•基于HTTP(S)协议,通过JSON格式描述功能能力•设计为模型无关(model-agnostic),任何具备兼容运行时的LLM均可使用MCP兼容服务器•与API网关及企业级认证标准兼容(例如OAuth2、mTLS等)
工程应用场景(Engineering Use Cases)
➀ LLM与内部API集成
支持安全、只读或交互式访问结构化的业务数据,避免暴露原始接口。
➁ 企业级智能体(Enterprise Agents)
为自主智能体提供来自Salesforce、SAP或内部知识库等工具的运行时上下文信息。
➂ 动态提示词构建(Dynamic Prompt Construction)
根据用户会话、系统状态或任务流程逻辑动态生成提示词。
什么是 ACP(智能体通信协议)?
ACP(Agent Communication Protocol,智能体通信协议)是一个开放标准,最初由 BeeAI 和 IBM 提出,旨在支持同一本地或边缘环境中多个 AI 智能体之间的结构化通信、发现与协调。
与面向云的协议(如 A2A)或上下文路由协议(如 MCP)不同,ACP 专为本地优先(local-first)和实时智能体编排而设计,强调最小化网络开销,并实现运行时中多智能体之间的紧密集成。
协议设计与架构(Protocol Design & Architecture)
ACP 定义了一个去中心化的智能体环境,其核心特点包括:
•每个智能体通过本地广播/发现机制发布其身份、能力和状态;•智能体之间通过事件驱动的消息系统进行通信,常见的方式包括本地总线(local bus)或进程间通信(IPC)系统;•可选的运行时控制器可用于协调智能体行为、汇总遥测数据并执行运行策略;ACP 智能体通常作为轻量级、无状态的服务或容器运行,并共享通信底层设施。
实施特性(Implementation Characteristics)
•设计适用于低延迟场景(如本地编排、机器人系统、离线边缘AI);•可通过 gRPC、ZeroMQ 或自定义运行时总线实现;•强调本地自治性(Local Sovereignty)——无需依赖云端或注册外部服务;•支持能力类型(capability typing)和语义描述(semantic descriptors),用于自动化任务路由。
工程应用场景(Engineering Use Cases)
➀ 边缘设备上的多智能体编排
适用于无人机、物联网集群或机器人舰队等场景中的多智能体实时协作。
➁ 本地优先的LLM系统
支持本地协调模型调用、传感器输入与动作执行,实现低延迟响应。
➂ 自治型运行时环境
在无法依赖集中式云基础设施的情况下,智能体仍能自主协调运行。
简而言之,ACP 提供了一个本地运行时协议层,适用于模块化AI系统 —— 它优先考虑低延迟协调、系统弹性和可组合性。对于注重隐私、自主运行或以边缘为先的部署环境(而非云优先方案),ACP 是天然契合的选择。
什么是 A2A(Agent-to-Agent Protocol,智能体对智能体协议)?
A2A 协议[2]由 Google 提出,是一种跨平台规范,旨在使 AI 智能体能够在异构系统中进行通信、协作与任务委派。
🔗 官方链接:google.github.io[3]
与强调本地优先的 ACP 或专注于工具集成的 MCP 不同,A2A 聚焦于横向互操作性——它标准化了来自不同厂商或运行环境的智能体如何通过开放网络交换能力并协调工作流。
协议概览(Protocol Overview)
A2A 定义了一种基于 HTTP 的通信模型,将智能体视为可互操作的服务。每个智能体都会公开一个“Agent Card”(智能体卡片)——这是一个机器可读的 JSON 描述文件,包含智能体的身份、功能、接口端点和认证要求。
智能体利用这些信息实现以下能力:
•程序化发现彼此•协商任务与角色分工•交换消息、数据以及流式更新
虽然原则上 A2A 对传输层协议没有限制,但当前标准指定使用 HTTPS 上的 JSON-RPC 2.0 作为核心交互机制。
核心组件(Core Components)
🧾 Agent Cards(智能体卡片)
以 JSON 文档形式描述一个智能体的能力、接口端点、支持的消息类型、认证方式以及运行时元数据。
🔁 A2A 客户端/服务端接口(A2A Client/Server Interface)
每个智能体可以作为客户端(任务发起者)、服务端(任务执行者)或两者兼具,从而支持任务的动态路由与协商。
📨 消息与资源交换(Message & Artifact Exchange)
支持包含上下文信息的多段任务、多轮交互中的流式输出(通过 SSE 实现)以及持久性资源(如文件、知识片段)传输。
🎛 用户体验协商(User Experience Negotiation)
智能体可根据下游智能体的能力自适应消息格式、内容粒度与可视化方式。
🔐 安全架构(Security Architecture)
•基于 OAuth 2.0 和 API Key 的授权机制•能力范围限定接口(capability-scoped endpoints):智能体仅暴露其声明交互所需的功能•支持“黑箱模式”(opaque mode):隐藏内部逻辑,仅公开可调用的服务接口
实施特性(Implementation Characteristics)
•天然适配 Web 环境:基于 HTTP、JSON-RPC 和标准 Web 安全机制构建•模型无关:适用于任何实现该协议的智能体系统,无论是否基于 LLM•支持任务流式处理与多轮协作:数据负载轻巧,支持实时交互与高效协同
工程应用场景(Engineering Use Cases)
➀ 跨平台智能体生态系统
适用于来自不同团队或厂商的智能体需要安全互操作的场景。
➁ 云原生AI环境中的分布式智能体编排
如在 Vertex AI、LangChain、HuggingFace Agents 等平台中进行智能体协同管理。
➂ 多智能体协作框架
支持企业级AI工作流中多个系统(如CRM、HR、IT智能体)之间的协作对接。
协议对比一览(Protocols Compared Side-by-Side)
特征/协议 | A2A(Agent-to-Agent) | MCP(Model Context Protocol) | ACP(Agent Communication Protocol) |
---|---|---|---|
发起方 | Anthropic | BeeAI & IBM | |
核心用途 | 异构智能体间的互操作与协作 | 向LLM注入结构化实时上下文 & 调用功能工具 | 本地环境中多智能体的实时通信与编排 |
通信架构 | HTTP + JSON-RPC 2.0 | HTTP(S) + JSON | 本地总线 / IPC(进程间通信) |
消息机制 | Agent Card + 多轮流式任务协商 | 实时上下文拼装 + 工具函数注册与调用 | 事件驱动消息传递 |
部署环境 | 开放网络 / Web 原生 / 云平台 | 与LLM配套运行,支持上下文处理与函数调用 | 边缘设备 / 本地系统(如无人机、机器人) |
是否模型依赖 | 模型无关,适配任意智能体系统 | 模型无关,但主要服务于LLM | 模型无关,强调轻量、无状态运行方式 |
适配性 | 高度适配云平台、API网关、OAuth2 等 | 支持API网关、企业认证,易集成业务系统 | 强调去中心化与本地自治,适用于无网或低延迟环境 |
安全机制 | OAuth 2.0 + API Key,支持能力限定与黑箱模式 | 企业级认证标准(如OAuth2、mTLS) | 无需外部服务注册,本地广播发现 + 可选控制器 |
典型应用场景 | 企业级AI工作流协作、LLM服务集成、供应商对接平台 | LLM内部提示管理、函数路由、企业系统嵌入式使用 | 边缘AI、无人系统、机器人群体协同 |
代表平台/项目 | Vertex AI, LangChain, HuggingFace Agents | Claude, 内部企业智能体调用服务 | 本地部署智能体、边缘推理、机器人总线系统 |
互补还是竞争?
A2A + MCP
A2A 和 MCP 并不是在彼此竞争 —— 它们在解决智能代理 AI 拼图中完全不同的部分,实际上它们彼此契合得非常好。
可以把 MCP 想象成一个让 AI 代理接入世界的协议。它让代理能够访问文件、API、数据库 —— 基本上,就是它们完成有用工作所需的全部结构化上下文。无论是获取实时销售数据,还是生成定制报告,MCP 都处理与工具和数据的连接。
现在再加上一层 A2A。这是代理开始协作的地方。A2A 提供了一个共享的语言和一套规则,让代理能够彼此发现、委派任务,并协商如何合作 —— 即使它们是由不同厂商构建,或运行在不同平台上。
所以可以用一种简单的方式来理解:
•⟢ MCP 让 AI 连接工具•⟢ A2A 让 AI 连接其他 AI
它们共同构建了一个强大且模块化的基础,用于打造智能且协同工作的系统。
那 ACP 呢?
接下来是 ACP,它采取的是完全不同的方式。ACP 关注的是 本地优先的代理协同 —— 完全不依赖云端。
它不是通过 HTTP 和基于 Web 的发现机制,而是让代理在一个共享运行时中彼此发现并通信。
这对于以下场景非常合适:
•带宽受限或需要低延迟的环境(比如机器人或设备端助手),•对隐私要求较高,希望所有操作都保持离线,•或部署在无法接入互联网的场所(如工厂车间、边缘节点)。
ACP 并不是要与 A2A 竞争 —— 它只是填补了一个不同的空白。
但在某些部署环境中,尤其是受严格控制的场景,ACP 有可能完全取代 A2A,因为它跳过了基于 Web 协议的开销,直接在本地完成任务。
融合还是碎片化?
随着越来越多的团队开始采用这些协议,未来可能呈现出几种不同的走向。
✅ 最佳情况?
我们看到的是融合趋势。
想象一下一个统一的智能代理平台:A2A 处理代理之间的通信,MCP 管理工具和数据的访问,而 ACP 风格的运行时用于边缘或离线场景。
一切都能顺畅协同,开发者无需担心背后具体使用的是哪个协议。
❌ 最差情况?
事情走向碎片化。
不同厂商推动各自版本的 A2A 或 MCP,最终变成一团乱麻 —— 就像早期的 Web 服务那样,不同系统之间无法互通,除非写很多“胶水代码”进行桥接。
⚖️ 中间道路?
开源工具和中间件也许能拯救局面。
这类项目位于代理和协议之间,对协议差异进行抽象,向开发者提供一个干净统一的 API —— 底层则根据代理所处的环境和运行方式,自动完成协议转换。
简而言之:我们还处在早期阶段。但我们今天构建和采纳这些标准的方式,将决定未来 AI 代理是成为一个协同一致的生态系统,还是沦为一个孤岛林立的拼贴世界。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~