Transformer中query、key和value的状态为什么要是 contiguous?

Transformer中query、key和value的状态为什么要是 contiguousd值?

在阅读Transformer模型的相关代码时,会发现query、key和value都会有contiguous()化操作,如下所示:

...
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
...

为何要执行这一步呢???

了解什么是contiguous

在深度学习和张量操作中,“连续”(contiguous)是指张量在内存中的存储方式。具体来说,一个张量是连续的,如果它的元素在内存中是按顺序存储的,并且没有间隔或跳跃。这种存储方式对于许多张量操作是高效的,因为它们可以利用内存的局部性来加速计算。

为什么需要连续的张量
  1. 性能优化:许多张量操作(如 viewtranspose 等)要求张量是连续的。如果张量不是连续的,这些操作可能会创建一个新的连续张量副本,这会增加内存使用并降低性能。
  2. 避免错误:某些操作(特别是底层实现的操作,如 CUDA 内核)可能无法正确处理非连续张量,导致运行时错误或不正确的结果。
如何检查张量是否连续

你可以使用 PyTorch 提供的 is_contiguous() 方法来检查一个张量是否是连续的:

import torch

x = torch.randn(3, 4)
print(x.is_contiguous())  # 输出: True

y = x.transpose(0, 1)
print(y.is_contiguous())  # 输出: False

在这个例子中,x 是连续的,但 y 不是,因为 transpose 操作改变了张量的存储顺序。

如何使张量连续

你可以使用 contiguous() 方法将一个张量转换为连续的张量:

y_contiguous = y.contiguous()
print(y_contiguous.is_contiguous())  # 输出: True

JambaSdpaAttention 中的具体应用

JambaSdpaAttention 类中,有以下代码段用于确保查询、键和值的状态是连续的:

if query_states.device.type == "cuda" and attention_mask is not None:
    query_states = query_states.contiguous()
    key_states = key_states.contiguous()
    value_states = value_states.contiguous()

  • 作用:这段代码确保了在设备是 CUDA 并且提供了注意力掩码的情况下,查询、键和值的状态是连续的。
  • 意义
    • CUDA 设备:在 GPU 上进行计算时,连续的张量可以显著提高性能,因为 GPU 对于连续内存访问有更好的优化。
    • 注意力掩码:某些版本的 PyTorch 中,torch.nn.functional.scaled_dot_product_attention 在处理非连续输入时可能会出现 bug。通过调用 .contiguous() 确保张量是连续的,可以避免这个问题。
示例

假设我们有一个非连续的张量 query_states,并且我们在 CUDA 设备上进行计算:

import torch

# 创建一个非连续的张量
query_states = torch.randn(2, 3, 4).transpose(1, 2)

# 检查是否连续
print(query_states.is_contiguous())  # 输出: False

# 将其转换为连续的张量
query_states = query_states.contiguous()

# 再次检查是否连续
print(query_states.is_contiguous())  # 输出: True

通过这种方式,JambaSdpaAttention 确保了在计算注意力时使用的张量是连续的,从而提高了计算效率并避免了潜在的错误。

如果你有更多具体的问题或需要进一步解释某个部分,请告诉我!

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

自注意力机制的代码可以使用PyTorch实现如下: ```python class SelfAttention(nn.Module): def __init__(self, hidden_size, num_heads, dropout_prob): super(SelfAttention, self).__init__() self.num_heads = num_heads self.head_size = hidden_size // num_heads self.query = nn.Linear(hidden_size, hidden_size) self.key = nn.Linear(hidden_size, hidden_size) self.value = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(dropout_prob) def forward(self, input_tensor): batch_size = input_tensor.size(0) query = self.query(input_tensor).view(batch_size, -1, self.num_heads, self.head_size).transpose(1, 2) key = self.key(input_tensor).view(batch_size, -1, self.num_heads, self.head_size).transpose(1, 2) value = self.value(input_tensor).view(batch_size, -1, self.num_heads, self.head_size).transpose(1, 2) attention_scores = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.head_size) attention_probs = nn.Softmax(dim=-1)(attention_scores) context = torch.matmul(self.dropout(attention_probs), value) context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.head_size) return context ``` 这段代码定义了一个SelfAttention模块,其包含了querykeyvalue三个线性层,并且使用了多头注意力机制。在forward方法,将输入张量通过querykeyvalue三个线性层,然后将结果进行reshape、transpose等操作,最后计算注意力分数,然后通过softmax函数归一化得到注意力分布,然后将分布与value相乘得到上下文向量。最后将多头的上下文向量拼接起来,得到最终的输出
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值