大家好,今天想和大家聊聊大语言模型(LLM)微调这个话题。你可能听说过像 GPT、LLaMA 这样的预训练大模型能在很多任务上表现优异,但面对具体需求时,它们往往需要进一步微调,才能解决特定的任务。微调虽然强大,但传统方法太过“笨重”,而 LoRA(Low-Rank Adaptation)为我们提供了一种更高效的解决方案。
今天这篇文章会从基础概念到 LoRA 的原理,带大家一步步搞清楚这个技术。
为什么需要微调?
大语言模型在预训练阶段已经学会了通用能力,比如生成文本、理解语义等。但实际场景往往对领域知识或任务精度有更高要求,比如法律文书生成、医学报告分析,这时候就需要“因地制宜”地调整模型,而这就是微调的核心目标:在已有的基础上定制化模型能力。
举个例子,预训练模型像一本百科全书,而微调就像在百科全书里加上一个特别的章节,专门讲解你的领域。通过微调,我们能让模型在特定任务上表现更好。
传统微调的难点在哪里?
传统微调方法通常需要对模型的部分参数进行重新训练。常见的做法是“冻住”模型底层的大部分参数,只调整顶部几层(如下图所示),因为顶部更贴近任务目标:
但即便只调整顶部几层,当模型足够大的时候,调整这些参数仍然需要消耗大量算力和存储资源。比如一个 LLaMA 模型有 32 层,每层大约有 2 亿参数,哪怕只改最后一层,也会是一笔不小的资源开销。
此外,每次针对新任务微调模型时,我们可能需要为每个任务保存一份完整的模型拷贝。对于大模型来说,这意味着巨大的存储成本。
怎么让微调更高效?
为了降低资源消耗,一些研究者提出了参数高效微调(PEFT)的概念。其核心思路是:不直接修改原模型,而是新增一小部分模块,只对这些模块进行训练。这些模块被称为适配器(Adapter)。
适配器模块有两个关键特点:
-
- 体积小:只需要少量的额外参数。
-
- 对原模型干扰小:保持原模型能力不变,只做针对性增强。
LoRA:低秩适配器的核心思想
LoRA 是一种更进一步的适配器技术,它通过插入低秩矩阵(Low-Rank Matrices)作为适配器模块,将高维矩阵压缩为更小的低秩矩阵,从而显著减少参数量。简单来说,LoRA 的思路是“压缩信息,减少冗余”,它背后的数学原理是矩阵分解。
矩阵分解的基本原理
LoRA 的关键就在于:直接在训练过程中学习这两个低秩矩阵 (B) 和 ©,而不是调整原始矩阵 (A)。这种方法既节省存储空间,也减少计算复杂度。
以下是一个示意代码片段:
import torch import torch.nn as nn # 假设有一个全连接层的原始权重 original_weight = torch.randn(2000, 200) # 引入 LoRA 的低秩分解 rank = 3 B = nn.Parameter(torch.randn(2000, rank)) C = nn.Parameter(torch.randn(rank, 200)) # 低秩近似 approx_weight = torch.matmul(B, C) # 替换原始权重 original_weight.data.copy_(approx_weight)
通过这样的方式,我们只需训练 (B) 和 ©,而不动原始权重。
优势与权衡
LoRA 带来的好处显而易见:
-
• 显著减少参数量:微调一个 LLaMA-3.1(8B 参数)模型,只需要训练约 500 万参数,而不是数十亿。
-
• 加速训练:因为低秩矩阵的计算更简单。
-
• 节省存储:只需存储额外的适配器参数,不需要保存整个模型。
但 LoRA 也有一些限制,比如它可能在适配复杂任务时表现欠佳,因为参数量压缩得过多会影响模型的适应能力。为了解决这一点,可以引入更高秩的矩阵,或者结合量化技术(如 QLoRA)进一步优化。
写到最后的一些思考
LoRA 的提出为大模型微调提供了一种更加灵活高效的方式。通过将模型参数分解为低秩矩阵,它不仅降低了计算和存储成本,也为多任务学习和模型共享开辟了新思路。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓