手把手教你用 DeepSeek 构建知识库,打造专属智能助手!

DeepSeek R1 发布后,风靡全球。在除了印度外的 100 多个国家下载量排名第一。用户访问量太大+各种外部原因,官网也光荣地倒下了。这两天经常处于瘫痪状态,是不是给你来个服务器繁忙,请稍后再试,太崩溃了,极其影响效率。

硅基流动的 API 总算是上线了,这是目前为数不多的稳定、高速、满血版的DeepSeek R1 API,效果非常好。再也没有看到动不动服务器繁忙,请稍后再试的问题了。

接下来,利用DeepSeek+知识库,构建个性化的智能体。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 如何训练和调优DeepSeek模型 #### 环境配置 为了有效地训练DeepSeek模型,硬件方面需依据所选模型的需求配备充足的计算资源。对于复杂的模型或大规模的数据集,建议采用具备高性能GPU的服务器,并考虑多台服务器组成的集群用于分布式计算[^2]。 软件层面则要确保安装了必要的深度学习框架和支持库,比如PyTorch、TensorFlow以及其他任何与DeepSeek兼容的专用工具包和插件。这些组件共同构成了支持高效开发的基础架构。 #### 模型训练流程 当准备就绪之后,可以按照如下方式启动模型训练: ```python import deepseek as ds # 加载预定义的DeepSeek模型结构 model = ds.models.load_model('path_to_predefined_model') # 配置优化器和其他超参数设置 optimizer = ds.optim.Adam(learning_rate=0.001) # 准备训练数据集 train_dataset = prepare_training_data() # 开始训练循环 for epoch in range(num_epochs): model.train(train_dataset, optimizer) ``` 这段代码展示了基本的训练过程,其中`deepseek`是一个假设性的Python模块名,具体实现细节会有所不同。值得注意的是,在实际操作过程中还需关注更多因素,例如批大小(batch size)的选择、损失函数(loss function)的设计等。 #### 模型调优策略 针对已经完成初步训练的模型,可以通过调整超参数来进行进一步优化。这通常涉及到以下几个方面的工作: - **批量归一化(Batch Normalization)**:有助于稳定并加快收敛速度; - **正则化方法**:如L2权重衰减(weight decay),防止过拟合现象的发生; - **自适应学习率调度器**:动态改变每次迭代的学习速率,提高最终性能表现; 此外,还可以尝试不同的激活函数或者网络拓扑结构调整方案,以探索更佳的效果组合[^4]。 #### 实战技巧总结 在整个项目周期内保持良好的记录习惯非常重要,这样可以帮助追踪每一次改动带来的影响变化情况。同时也要善于利用社区资源和技术文档获取最新进展信息,及时更新自己的实践手段。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值