近年来,人工智能大模型(LLMs)的研究不断深入,衍生出了多个热门方向,聚焦提升模型的性能、适应性与应用场景,推动了技术的突破与革新。今天为大家梳理一下AI顶会上的五大热门研究方向,希望为那些专注大模型方向的研究者带来一些灵感和参考。
Part.01
人工智能研究热点
Part.01
检索增强生成(RAG)
大模型虽然在生成文本上有着强大的能力,但单靠参数往往容易生成出一些“幻觉内容”,即缺乏真实依据的错误信息。检索增强生成(RAG)则通过结合信息检索,帮助大模型实时从外部知识库获取精确的信息,使生成的内容更加准确可靠。
关键研究方向:
- 检索与生成的高效集成:增强生成过程的准确性,提升内容质量。
- 知识更新与跨领域应用:适配不同应用领域,使生成结果更具时效性。
近期研究进展:
- HippoRAG:OSU与斯坦福提出了类脑记忆系统模型,受人脑海马体启发,解决知识整合问题。
- Adaptive-RAG:AI2推出的动态问答系统,根据请求复杂性自适应策略,极大提升了问答效率。
- CRAG:中科大推出的新方法,专注于纠正RAG的生成偏差,确保生成内容更加鲁棒。
Part.02
大模型Agent:让AI真正成为“智能助手”
随着AI应用场景日趋复杂,单一模型难以应对多变需求,因此基于大模型构建多功能、能自我决策的大模型Agent正成为趋势。大模型Agent不仅能够自主推理,还能动态适应复杂环境,被视为智能助手的下一代形态。
研究重点:
- 多任务学习与常识推理:增强Agent在多样化任务场景下的适应性和推理能力。
- 持续学习&#