AI产品经理需要熟悉AI基础知识,包括AI行业现状,数学统计学,AI模型构建和模型基本概念。
之所以需要具备这些知识,是因为实现AI产品必然会涉及相应的AI技术,如果AI产品经理不了解相应技术基础,就不能很好的和研发人员沟通完成AI项目的管理。
当然,AI产品经理并不需要像AI算法工程师“那样,懂很底层的技术细节、数学公式的逻辑推
AI产品经理需要熟悉AI基础知识,包括AI行业现状,数学统计学,AI模型构建和模型基本概念
之所以需要具备这些知识,是因为实现AI产品必然会涉及相应的AI技术,如果AI产品经理不了解相应技术基础,就不能很好的和研发人员沟通,完成AI项目的管理。
当然,AI产品经理并不需要像AI算法工程师“那样,懂很底层的技术细节、数学公式的逻辑推导,但其中涉及的基本概念和行业现状应有所了解。
下面从这三部分介绍~
AI行业现状
首先需要了解AI行业现状。AI的产业架构可以分成基础技术层、算法层、应用层和解决方案层。
1)基础技术层:
硬件设备: 包括用于AI计算的芯片、服务器和备。例如云计算、GPU等。
基础软件: 包括用于数据处理、模型训练和部署的开发工具“和框架,例如Tensorflow、Pytorch等框架
2)算法层: 包括机器学习、深度学习、增强学习等算法。
3)应用层: 主要是垂直领域“应用,包括人工智能在医疗、金融、零售、交通等行业的具体应用,例如金融风控识别系统、智能客服系统等。
4)解决方案层: 包括AI技术在智能制造、智慧城市、智慧医疗“等场景的解决方案,主要关注如何将AI技术与特定行业的业务需求相结合,提供定制化的解决方案,以推动该行业的数字化转型“和智能化发展
其中基础技术层主要负责人员是软件开发,算法层负责人是算法工程师,而应用层和解决方案层是AI产品经理主要工作方向。
数学统计学基本概念
数学统计学是人工智能的基础,AI产品经理应了解并掌握,包括线性代数°、概率论和统计学的基本概念。
1)线性代数
线性代数是人工智能和机器学习中的基础数学概念,涉及向量、矩阵、线性方程组“等内容。
需要理解常量、向量、矩阵、张量“的概念。
常量(Scalar): 常量是一个单独的数值,比如一个用户的年龄数据。
向量(Vector): 向量是一个有序的数值集合具有大小和方向。比如多个用户的年龄数据集合。
矩阵(Matrix): 矩阵是一个二维的数值集合由行和列组成。矩阵可以看作是向量的推广,其中每个元素都有一个行索引和列索引。在机器53习中,矩阵常用于表示数据集或模型的参数,1如多个用户的年龄和收入数据、灰度图像的像素值均为2维矩阵,
张量(Tensor):张量是多维的数值集合,张量
概率统计
需要重点掌握随机变量和概率分布,了解业务场景下的特征数据和模型结果概率分布情况,有助于产品经理对AI模型的验收(例如已知身高是正态分布°,但模型输出的身高预测“结果却不是正态分布的,则需要质疑模型效果)
随机变量(Random Variable)
随机变量是描述随机现象“结果的数学变量。它可以取多个值,分为离散和连续随机变量两类
离散随机变量°:只能取有限个或可数无限个值的随机变量,如抛硬币的结果(正面或反面)。
连续随机变量:可以取任意实数值的随机变量如身高、体重等。
概率分布(Probability Distribution):概率分布描述了随机变量可能取值的概率分布情况,分成离散和连续概率分布两类
离散概率分布“主要有:
二项分布:描述了在一系列独立重复的是/非试验中成功的次数的概率分布。
贝努力分布:描述了只有两种可能结果的单次随机试验的概率分布。
多项式分布:描述了多项试验中每个类别出现次数的概率分布。
连续概率分布主要有:
正态分布:也称为高斯分布°,是最常见的连续概率分布,具有钟形曲线。
指数分布°:描述了独立随机事件发生时间间隔的概率分布。
均匀分布:所有数值在一个区间内具有相同的率密度“的分布。
t分布:用于小样本情况下对总体均值的推断。
AI模型构建和模型基本概念
念,有助于更好的和研发协作,管理整个AI项目的研发周期。
1)AI模型构建: 主要包括模型设计、数据准备和特征选择°、模型训练、模型验证4步,最后模型才会作为产品交付。
其中,在模型设计阶段,产品经理需要明确当前的场景适用的算法有哪些、每种算法适合解决什么问题;在数据准备阶段,产品经理需结合业务判断什么数据更具有代表性,提供更高质量的数据;在模型验证阶段,需要评估模型°是否达到了上线的标准。
2)模型基本概念:
AI产品经理需要熟悉AI基础知识,包括AI行业现状,数学统计学,AI模型构建和模型基本概念。
之所以需要具备这些知识,是因为实现AI产品必然会涉及相应的AI技术,如果AI产品经理不了解相应技术基础,就不能很好的和研发人员沟通完成AI项目的管理。
当然,AI产品经理并不需要像AI算法工程师“那样,懂很底层的技术细节、数学公式的逻辑推
AI产品经理需要熟悉AI基础知识,包括AI行业现状,数学统计学,AI模型构建和模型基本概念
之所以需要具备这些知识,是因为实现AI产品必然会涉及相应的AI技术,如果AI产品经理不了解相应技术基础,就不能很好的和研发人员沟通,完成AI项目的管理。
当然,AI产品经理并不需要像AI算法工程师“那样,懂很底层的技术细节、数学公式的逻辑推导,但其中涉及的基本概念和行业现状应有所了解。
下面从这三部分介绍~
以上就是入门AI产品经理需要掌握的基础
AI产品经理,0基础小白入门指南
作为一个零基础小白,如何做到真正的入局AI产品?
什么才叫真正的入局?
是否懂 AI、是否懂产品经理,是否具备利用大模型去开发应用能力,是否能够对大模型进行调优,将会是决定自己职业前景的重要参数。
你是否遇到这些问题:
1、传统产品经理
- 不懂Al无法对AI产品做出判断,和技术沟通丧失话语权
- 不了解 AI产品经理的工作流程、重点
2、互联网业务负责人/运营
- 对AI焦虑,又不知道怎么落地到业务中想做定制化AI产品并落地创收缺乏实战指导
3、大学生/小白
- 就业难,不懂技术不知如何从事AI产品经理想要进入AI赛道,缺乏职业发展规划,感觉遥不可及
为了帮助开发者打破壁垒,快速了解AI产品经理核心技术原理,学习相关AI产品经理,及大模型技术。从原理出发真正入局AI产品经理。
为了帮助大家更好地把握AI大模型的学习和发展机遇,下面提供一份AI大模型的学习路线图以及相关的学习资源,旨在帮助您快速掌握AI大模型的核心技术和应用场景。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
五、面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】