1.2 集合及其基本运算

集合的概念

集合的朴素概念

”集合“是现代数学研究中的底层概念。集合论奠基人奥尔格·康托尔曾这样叙述集合的概念:

我们把集合理解为由若干确定的有充分区别的具体或抽象的对象合并而成的一个整体

从中,作者归纳出朴素集合论中有关集合的一些要点:

  • 集合可由任何有区别的对象组成
  • 集合由其组成对象整体唯一确定
  • 任何性质都能够确定一个具有该性质的集合

如果 x x x 是一个对象, P P P 为某种性质, P ( x ) P(x) P(x) 代表对象 x x x 具有性质 P P P.则 { x ∣ P ( x ) } \{x|P(x)\} {xP(x)} 表示将具有性质 P P P 的所有对象 x x x 聚合起来,形成一个集合。这些对象称为集合的元素

如果集合元素个数有限,例如 A A A 的元素只有 n n n 个,分别为 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn , 则可记

A = { x 1 , x 2 , ⋯   , x n } A=\{x_1,x_2,\cdots,x_n\} A={x1,x2,,xn}. 这称为集合的列举法表示。

在各种情境下,“集合"具有各种各样的同义词,如"类”,“族”,“组”,"全体"等。

罗素悖论

上面提到的集合论的要点并不是集合的精确定义,事实上,"性质"一词的宽泛性(该性质是否明晰),会导致矛盾的出现。

记性质 P ( x ) = x 不是 x 的元素 P(x)=x不是x的元素 P(x)=x不是x的元素 ,那么具有该性质的所有集合组成的整体 K = { x ∣ P ( x ) } K=\{x|P(x)\} K={xP(x)} 算不算一个集合呢?

如果 K K K 是一个集合,那么集合 K K K 要么是集合 K K K 的元素,要么不是集合 K K K 的元素。

  • 如果 K K K K K K 的元素,那么有 ¬ P ( K ) \neg P(K) ¬P(K),那么 K K K 不是 K K K 的元素
  • 如果 K K K 不是 K K K 的元素,那么有 P ( K ) P(K) P(K) ,那么 K K K K K K 的元素

可见,按照朴素集合论的简单概念,矛盾不可避免地产生了.

具有性质 K K K 的对象整合在一起作为集合会产生悖论。进而,所有集合组成的集合也是一个矛盾点。

要想解决这个悖论,建立完善的公理化集合论,就要在“性质”上加入准确的限制和定义。这是公理化集合论的范畴,笔者还未接触,不再多言。

对于数学分析中的具体集合,上面提到的逻辑漏洞不会出现。

包含关系

元素属于集合

组成集合的对象称为集合的元素。一般用小写字母表示元素,大写字母表示集合。

x 属于 A   : =   x 是 A 的元素  = :   x ∈ A x属于A\ :=\ x是A的元素\ =:\ x\in A x属于A := xA的元素 =: xA

x 不属于 A   : =   x 不是 A 的元素  = :   x ∉ A x不属于A\ :=\ x不是A的元素\ =:\ x\notin A x不属于A := x不是A的元素 =: x/A

存在量词: ∃ \exists

全称量词: ∀ \forall

集合包含集合

A A A 的所有元素都是 B B B 的元素,则称 A A A 包含于 B B B B B B 包含 A A A A A A B B B 的子集

A ⊂ B   : =   ∀ x ( ( x ∈ A ) ⇒ ( x ∈ B ) ) A\subset B \ :=\ \forall x((x\in A)\Rightarrow (x\in B)) AB := x((xA)(xB))

A = B : = ( A ⊂ B ) ∧ ( B ⊂ A ) A=B:=(A\subset B)\wedge(B\subset A) A=B:=(AB)(BA)

依据规则或性质 P P P , 可以在集合 M M M 中导出一个子集 { x ∈ M ∣ P ( x ) } \{x\in M|P(x)\} {xMP(x)} . 如果 M M M 的元素都满足 P P P,这个导出的子集明显就是它本身;如果 M M M 中没有一个元素满足 P P P , 导出的子集中将一个元素都没有,称这样的集合为空集,记作 ∅ \varnothing .

最简单的集合运算

集合间的基本运算是个老生常谈的问题,这里只作列举,不进行详述

设全集为 M M M

并集

A ∪ B   : =   { x ∈ M ∣ ( x ∈ A ) ∨ ( x ∈ B ) } A\cup B\ := \ \{x\in M|(x\in A)\vee (x\in B)\} AB := {xM(xA)(xB)}

交集

A ∩ B   : =   { x ∈ M ∣ ( x ∈ A ) ∧ ( x ∈ B ) } A\cap B \ := \ \{x\in M|(x\in A)\wedge (x\in B)\} AB := {xM(xA)(xB)}

差集

A − B   : =   { x ∈ M ∣ ( x ∈ A ) ∧ ( x ∉ B ) } A-B\ :=\ \{x\in M|(x\in A)\wedge (x\notin B)\} AB := {xM(xA)(x/B)}

补集

C M A = M − A C_MA=M-A CMA=MA

集合运算的小例题

验证

C M ( A ∪ B ) = C M A ∩ C M B C_M(A\cup B)=C_MA\cap C_MB CM(AB)=CMACMB

C M ( A ∩ B ) = C M A ∪ C M B C_M(A\cap B)=C_MA\cup C_MB CM(AB)=CMACMB

证明

x ∈ C M ( A ∪ B ) ⇒ x ∉ ( A ∪ B ) ⇒ ( x ∉ A ) ∧ ( x ∉ B ) x\in C_M(A\cup B)\Rightarrow x\notin (A\cup B)\Rightarrow (x\notin A)\wedge (x\notin B) xCM(AB)x/(AB)(x/A)(x/B)

⇒ ( x ∈ C M A ) ∧ ( x ∈ C M B ) ⇒ x ∈ C M A ∩ C M B \Rightarrow (x\in C_M A)\wedge(x\in C_MB)\Rightarrow x\in C_MA\cap C_MB (xCMA)(xCMB)xCMACMB

这说明 C M ( A ∪ B ) ⊂ C M A ∩ C M B C_M(A\cup B) \subset C_MA\cap C_MB CM(AB)CMACMB

x ∈ C M A ∩ C M B ⇒ ( x ∈ C M A ) ∧ ( x ∈ C M B ) ⇒ ( x ∉ A ) ∧ ( x ∉ B ) x\in C_MA\cap C_MB \Rightarrow (x\in C_M A)\wedge(x\in C_MB) \Rightarrow (x\notin A)\wedge (x\notin B) xCMACMB(xCMA)(xCMB)(x/A)(x/B)

⇒ x ∉ ( A ∪ B ) ⇒ x ∈ C M ( A ∪ B ) \Rightarrow x\notin (A\cup B) \Rightarrow x\in C_M(A\cup B) x/(AB)xCM(AB)

这说明 C M A ∪ C M B ⊂ C M ( A ∩ B ) C_MA\cup C_MB \subset C_M(A\cap B) CMACMBCM(AB)

综上, C M ( A ∪ B ) = C M A ∩ C M B C_M(A\cup B)=C_MA\cap C_MB CM(AB)=CMACMB

x ∈ C M ( A ∩ B ) ⇒ x ∉ ( A ∩ B ) ⇒ ( x ∉ A ) ∨ ( x ∉ B ) x\in C_M(A\cap B)\Rightarrow x\notin (A\cap B)\Rightarrow (x\notin A)\vee(x\notin B) xCM(AB)x/(AB)(x/A)(x/B)

⇒ ( x ∈ C M A ) ∨ ( x ∈ C M B ) ⇒ x ∈ C M A ∪ C M B \Rightarrow (x\in C_M A)\vee(x\in C_MB)\Rightarrow x\in C_MA\cup C_MB (xCMA)(xCMB)xCMACMB

这说明 C M ( A ∩ B ) ⊂ C M A ∪ C M B C_M(A\cap B) \subset C_MA\cup C_MB CM(AB)CMACMB

x ∈ C M A ∪ C M B ⇒ ( x ∈ C M A ) ∨ ( x ∈ C M B ) ⇒ ( x ∉ A ) ∨ ( x ∉ B ) x\in C_MA\cup C_MB \Rightarrow (x\in C_M A)\vee(x\in C_MB) \Rightarrow (x\notin A)\vee (x\notin B) xCMACMB(xCMA)(xCMB)(x/A)(x/B)

⇒ x ∉ ( A ∩ B ) ⇒ x ∈ C M ( A ∩ B ) \Rightarrow x\notin (A\cap B) \Rightarrow x\in C_M(A\cap B) x/(AB)xCM(AB)

这说明 C M A ∪ C M B ⊂ C M ( A ∩ B ) C_MA\cup C_MB \subset C_M(A\cap B) CMACMBCM(AB)

综上, C M ( A ∩ B ) = C M A ∪ C M B C_M(A\cap B)=C_MA\cup C_MB CM(AB)=CMACMB

笛卡尔积

称集合 A A A B B B 组成的新集合 { A , B } \{A,B\} {A,B}无序偶。由于集合元素的无序性, { A , B } = { B , A } \{A,B\}=\{B,A\} {A,B}={B,A} .

在无序偶上加入序的附加特征,得到有序偶,元素集合 A A A , B B B 在偶中的位置发挥作用,记作 ( A , B ) (A,B) (A,B).

( A , B ) = ( C , D ) (A,B)=(C,D) (A,B)=(C,D) 当且仅当 ( A = C ) ∧ ( B = D ) (A=C)\wedge(B=D) (A=C)(B=D) .

元素偶集----笛卡尔积

将第一元素取自 A A A 而 第二元素取自 B B B 的有序偶的集合称作集合 A A A B B B笛卡尔积/直积

C = A × B   : =   { ( x , y ) ∣ ( x ∈ A ) ∧ ( y ∈ B ) } C=A\times B\ :=\ \{(x,y)|(x\in A)\wedge(y\in B)\} C=A×B := {(x,y)(xA)(yB)}

第一元素 x x x 又称序偶 z = ( x , y ) z=(x,y) z=(x,y) 的第一投影/坐标,记作 pr 1 z \text{pr}_1z pr1z

第二元素 x x x 又称序偶 z = ( x , y ) z=(x,y) z=(x,y) 的第二投影/坐标,记作 pr 2 z \text{pr}_2z pr2z

一般而言, A × B ≠ B × A A\times B \neq B\times A A×B=B×A

习题

【1】验证集合关系式

a) ( A ⊂ C ) ∧ ( B ⊂ C ) ⇔ ( ( A ∪ B ) ⊂ C ) (A\subset C)\wedge(B\subset C)\Leftrightarrow ((A\cup B)\subset C) (AC)(BC)((AB)C)

证明:

假设 ( A ⊂ C ) ∧ ( B ⊂ C ) (A\subset C)\wedge(B\subset C) (AC)(BC) 成立. x ∈ A ∪ B ⇒ ( x ∈ A ) ∨ ( x ∈ B ) ⇒ x ∈ C x\in A\cup B \Rightarrow (x\in A)\vee (x\in B)\Rightarrow x\in C xAB(xA)(xB)xC. 故 ( A ∪ B ) ⊂ C (A\cup B)\subset C (AB)C.

( A ⊂ C ) ∧ ( B ⊂ C ) ⇒ ( ( A ∪ B ) ⊂ C ) (A\subset C)\wedge(B\subset C)\Rightarrow ((A\cup B)\subset C) (AC)(BC)((AB)C)

假设 ( A ∪ B ) ⊂ C (A\cup B)\subset C (AB)C 成立. x ∈ A ⇒ x ∈ A ∪ B ⇒ x ∈ C x\in A\Rightarrow x\in A\cup B\Rightarrow x\in C xAxABxC. 这说明 A ⊂ C A\subset C AC . x ∈ B ⇒ x ∈ A ∪ B ⇒ x ∈ C x\in B\Rightarrow x\in A\cup B\Rightarrow x\in C xBxABxC. 这说明 B ⊂ C B\subset C BC . 综上, ( A ⊂ C ) ∧ ( B ⊂ C ) (A\subset C)\wedge (B\subset C) (AC)(BC). 即 ( A ∪ B ) ⊂ C ⇒ ( A ⊂ C ) ∧ ( B ⊂ C ) (A\cup B)\subset C\Rightarrow(A\subset C)\wedge (B\subset C) (AB)C(AC)(BC) .

综上,有 ( A ⊂ C ) ∧ ( B ⊂ C ) ⇔ ( ( A ∪ B ) ⊂ C ) (A\subset C)\wedge(B\subset C)\Leftrightarrow ((A\cup B)\subset C) (AC)(BC)((AB)C)


b) ( C ⊂ A ) ∧ ( C ⊂ B ) ⇔ ( C ⊂ ( A ∩ B ) ) (C\subset A)\wedge (C\subset B)\Leftrightarrow (C\subset (A\cap B)) (CA)(CB)(C(AB))

证明:

假设 ( C ⊂ A ) ∧ ( C ⊂ B ) (C\subset A)\wedge (C\subset B) (CA)(CB) 成立. x ∈ C ⇒ ( x ∈ A ) ∧ ( x ∈ B ) ⇒ x ∈ A ∩ B x\in C \Rightarrow (x\in A)\wedge (x\in B)\Rightarrow x\in A\cap B xC(xA)(xB)xAB. 故 C ⊂ ( A ∩ B ) C\subset (A\cap B) C(AB)成立 .

假设 C ⊂ ( A ∩ B ) C\subset (A\cap B) C(AB) 成立. x ∈ C ⇒ x ∈ A ∩ B ⇒ ( x ∈ A ) ∧ ( x ∈ B ) ⇒ x\in C\Rightarrow x\in A\cap B\Rightarrow (x\in A)\wedge (x\in B)\Rightarrow xCxAB(xA)(xB). 故 ( C ⊂ A ) ∧ ( C ⊂ B ) (C\subset A)\wedge (C\subset B) (CA)(CB) 成立.


c) C M ( C M A ) = A C_M(C_M A)=A CM(CMA)=A

证明:

x ∈ C M ( C M A ) ⇒ x ∉ C M A ⇒ x ∈ A x\in C_M(C_M A)\Rightarrow x\notin C_M A\Rightarrow x\in A xCM(CMA)x/CMAxA . 故 C M ( C M A ) ⊂ A C_M(C_M A)\subset A CM(CMA)A .

x ∈ A ⇒ x ∉ C M A ⇒ x ∈ C M ( C M A ) x\in A\Rightarrow x\notin C_M A\Rightarrow x\in C_M(C_M A) xAx/CMAxCM(CMA) . 故 A ⊂ C M ( C M A ) A\subset C_M(C_M A) ACM(CMA) .


d) ( A ⊂ C M B ) ⇔ ( B ⊂ C M A ) (A\subset C_M B)\Leftrightarrow (B\subset C_M A) (ACMB)(BCMA)

证明:

假设 ( A ⊂ C M B ) (A\subset C_M B) (ACMB) 成立. x ∈ B ⇒ x ∉ C M B ⇒ x ∉ A ⇒ x ∈ C M A x\in B\Rightarrow x\notin C_MB\Rightarrow x\notin A \Rightarrow x\in C_M A xBx/CMBx/AxCMA. 故 B ⊂ C M A B\subset C_M A BCMA 成立.

假设 ( B ⊂ C M A ) (B\subset C_M A) (BCMA) 成立. x ∈ A ⇒ x ∉ C M A ⇒ x ∉ B ⇒ x ∈ C M B x\in A\Rightarrow x\notin C_M A\Rightarrow x\notin B \Rightarrow x\in C_M B xAx/CMAx/BxCMB. 故 ( A ⊂ C M B ) (A\subset C_M B) (ACMB) 成立.


e) ( A ⊂ B ) ⇔ ( C M B ⊂ C M A ) (A\subset B)\Leftrightarrow (C_M B\subset C_M A) (AB)(CMBCMA)

证明:

假设 A ⊂ B A\subset B AB 成立. x ∈ C M B ⇒ x ∉ B ⇒ x ∉ A ⇒ x ∈ C M A x\in C_M B\Rightarrow x\notin B\Rightarrow x\notin A\Rightarrow x\in C_MA xCMBx/Bx/AxCMA. 故 ( A ⊂ B ) ⇒ ( C M B ⊂ C M A ) (A\subset B)\Rightarrow (C_M B\subset C_M A) (AB)(CMBCMA).

假设 ( C M B ⊂ C M A ) (C_M B\subset C_M A) (CMBCMA) 成立. x ∈ A ⇒ x ∉ C M A ⇒ x ∉ C M B ⇒ x ∈ B x\in A\Rightarrow x\notin C_M A\Rightarrow x\notin C_M B\Rightarrow x\in B xAx/CMAx/CMBxB. 故 ( C M B ⊂ C M A ) ⇒ ( A ⊂ B ) (C_M B\subset C_M A)\Rightarrow (A\subset B) (CMBCMA)(AB)

【2】证明集合交并运算的结合律和分配律

a) A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C = : A ∪ B ∪ C A\cup (B\cup C)=(A\cup B)\cup C=:A\cup B\cup C A(BC)=(AB)C=:ABC

证明:

x ∈ A ∪ ( B ∪ C ) ⇒ ( x ∈ A ) ∨ ( x ∈ ( B ∪ C ) ) x\in A\cup (B\cup C)\Rightarrow (x\in A)\vee (x\in(B\cup C)) xA(BC)(xA)(x(BC))

⇒ ( x ∈ A ) ∨ ( x ∈ B ) ∨ ( x ∈ C ) ⇒ ( x ∈ A ∪ B ) ∨ ( x ∈ C ) ⇒ x ∈ ( A ∪ B ) ∪ C \Rightarrow (x\in A)\vee(x\in B)\vee (x\in C)\Rightarrow (x\in A\cup B)\vee (x\in C)\Rightarrow x\in (A\cup B)\cup C (xA)(xB)(xC)(xAB)(xC)x(AB)C

A ∪ ( B ∪ C ) ⊂ ( A ∪ B ) ∪ C A\cup (B\cup C)\subset(A\cup B)\cup C A(BC)(AB)C

x ∈ ( A ∪ B ) ∪ C ⇒ ( x ∈ A ∪ B ) ∨ ( x ∈ C ) x\in (A\cup B)\cup C \Rightarrow (x\in A\cup B)\vee (x\in C) x(AB)C(xAB)(xC)

⇒ ( x ∈ A ) ∨ ( x ∈ B ) ∨ ( x ∈ C ) ⇒ ( x ∈ A ) ∨ ( x ∈ ( B ∪ C ) ) ⇒ x ∈ A ∪ ( B ∪ C ) \Rightarrow (x\in A)\vee(x\in B)\vee (x\in C)\Rightarrow (x\in A)\vee (x\in(B\cup C))\Rightarrow x\in A\cup (B\cup C) (xA)(xB)(xC)(xA)(x(BC))xA(BC)

( A ∪ B ) ∪ C ⇒ A ∪ ( B ∪ C ) (A\cup B)\cup C \Rightarrow A\cup (B\cup C) (AB)CA(BC)


b) A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C = : A ∩ B ∩ C A\cap (B\cap C)=(A\cap B)\cap C=:A\cap B\cap C A(BC)=(AB)C=:ABC

证明:

x ∈ A ∩ ( B ∩ C ) ⇒ ( x ∈ A ) ∧ ( x ∈ ( B ∩ C ) ) x\in A\cap (B\cap C)\Rightarrow (x\in A)\wedge (x\in(B\cap C)) xA(BC)(xA)(x(BC))

⇒ ( x ∈ A ) ∧ ( x ∈ B ) ∧ ( x ∈ C ) ⇒ ( x ∈ A ∩ B ) ∧ ( x ∈ C ) ⇒ x ∈ ( A ∩ B ) ∩ C \Rightarrow (x\in A)\wedge(x\in B)\wedge (x\in C)\Rightarrow (x\in A\cap B)\wedge (x\in C)\Rightarrow x\in (A\cap B)\cap C (xA)(xB)(xC)(xAB)(xC)x(AB)C

A ∩ ( B ∩ C ) ⊂ ( A ∩ B ) ∩ C A\cap (B\cap C)\subset(A\cap B)\cap C A(BC)(AB)C

x ∈ ( A ∩ B ) ∩ C ⇒ ( x ∈ A ∩ B ) ∧ ( x ∈ C ) x\in (A\cap B)\cap C \Rightarrow (x\in A\cap B)\wedge (x\in C) x(AB)C(xAB)(xC)

⇒ ( x ∈ A ) ∧ ( x ∈ B ) ∧ ( x ∈ C ) ⇒ ( x ∈ A ) ∧ ( x ∈ ( B ∩ C ) ) ⇒ x ∈ A ∩ ( B ∩ C ) \Rightarrow (x\in A)\wedge(x\in B)\wedge (x\in C)\Rightarrow (x\in A)\wedge (x\in(B\cap C))\Rightarrow x\in A\cap (B\cap C) (xA)(xB)(xC)(xA)(x(BC))xA(BC)

( A ∩ B ) ∩ C ⇒ A ∩ ( B ∩ C ) (A\cap B)\cap C \Rightarrow A\cap (B\cap C) (AB)CA(BC)


c) A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A\cap (B\cup C)=(A\cap B)\cup(A\cap C) A(BC)=(AB)(AC)

证明:

x ∈ A ∩ ( B ∪ C ) ⇒ ( x ∈ A ) ∧ ( x ∈ B ∪ C ) ⇒ ( x ∈ A ) ∧ ( ( x ∈ B ) ∨ ( x ∈ C ) x\in A\cap (B\cup C)\Rightarrow (x\in A)\wedge(x\in B\cup C)\Rightarrow (x\in A)\wedge((x\in B)\vee(x\in C) xA(BC)(xA)(xBC)(xA)((xB)(xC)

⇒ ( ( x ∈ A ) ∧ ( x ∈ B ) ) ∨ ( ( x ∈ A ) ∧ ( x ∈ C ) ) \Rightarrow ((x\in A)\wedge(x\in B))\vee ((x\in A)\wedge(x\in C)) ((xA)(xB))((xA)(xC))

⇒ ( x ∈ A ∩ B ) ∨ ( x ∈ A ∩ C ) ⇒ x ∈ ( A ∩ B ) ∪ ( A ∩ C ) \Rightarrow (x\in A\cap B)\vee (x\in A\cap C) \Rightarrow x\in(A\cap B)\cup(A\cap C) (xAB)(xAC)x(AB)(AC)

A ∩ ( B ∪ C ) ⊂ ( A ∩ B ) ∪ ( A ∩ C ) A\cap (B\cup C)\subset (A\cap B)\cup(A\cap C) A(BC)(AB)(AC)

x ∈ ( A ∩ B ) ∪ ( A ∩ C ) ⇒ ( x ∈ A ∩ B ) ∨ ( x ∈ A ∩ C ) x\in(A\cap B)\cup(A\cap C) \Rightarrow (x\in A\cap B)\vee (x\in A\cap C) x(AB)(AC)(xAB)(xAC)

⇒ ( ( x ∈ A ) ∧ ( x ∈ B ) ) ∨ ( ( x ∈ A ) ∧ ( x ∈ C ) ) \Rightarrow ((x\in A)\wedge(x\in B))\vee ((x\in A)\wedge(x\in C)) ((xA)(xB))((xA)(xC))

⇒ ( x ∈ A ) ∧ ( ( x ∈ B ) ∨ ( x ∈ C ) ⇒ ( x ∈ A ) ∧ ( x ∈ B ∪ C ) ⇒ x ∈ A ∩ ( B ∪ C ) \Rightarrow (x\in A)\wedge((x\in B)\vee(x\in C) \Rightarrow (x\in A)\wedge(x\in B\cup C)\Rightarrow x\in A\cap (B\cup C) (xA)((xB)(xC)(xA)(xBC)xA(BC)

( A ∩ B ) ∪ ( A ∩ C ) ⊂ A ∩ ( B ∪ C ) (A\cap B)\cup(A\cap C)\subset A\cap (B\cup C) (AB)(AC)A(BC)


d) A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∩ C ) A\cup (B\cap C)=(A\cup B)\cap(A\cap C) A(BC)=(AB)(AC)

证明:

x ∈ A ∪ ( B ∩ C ) ⇒ ( x ∈ A ) ∨ ( x ∈ B ∩ C ) ⇒ ( x ∈ A ) ∨ ( ( x ∈ B ) ∧ ( x ∈ C ) x\in A\cup (B\cap C)\Rightarrow (x\in A)\vee(x\in B\cap C)\Rightarrow (x\in A)\vee((x\in B)\wedge(x\in C) xA(BC)(xA)(xBC)(xA)((xB)(xC)

⇒ ( ( x ∈ A ) ∨ ( x ∈ B ) ) ∧ ( ( x ∈ A ) ∨ ( x ∈ C ) ) \Rightarrow ((x\in A)\vee(x\in B))\wedge ((x\in A)\vee(x\in C)) ((xA)(xB))((xA)(xC))

⇒ ( x ∈ A ∪ B ) ∧ ( x ∈ A ∪ C ) ⇒ x ∈ ( A ∪ B ) ∩ ( A ∪ C ) \Rightarrow (x\in A\cup B)\wedge (x\in A\cup C) \Rightarrow x\in(A\cup B)\cap(A\cup C) (xAB)(xAC)x(AB)(AC)

A ∪ ( B ∩ C ) ⊂ ( A ∪ B ) ∩ ( A ∪ C ) A\cup (B\cap C)\subset (A\cup B)\cap(A\cup C) A(BC)(AB)(AC)

x ∈ ( A ∪ B ) ∩ ( A ∪ C ) ⇒ ( x ∈ A ∪ B ) ∧ ( x ∈ A ∪ C ) x\in(A\cup B)\cap(A\cup C) \Rightarrow (x\in A\cup B)\wedge (x\in A\cup C) x(AB)(AC)(xAB)(xAC)

⇒ ( ( x ∈ A ) ∨ ( x ∈ B ) ) ∧ ( ( x ∈ A ) ∨ ( x ∈ C ) ) \Rightarrow ((x\in A)\vee(x\in B))\wedge ((x\in A)\vee(x\in C)) ((xA)(xB))((xA)(xC))

⇒ ( x ∈ A ) ∨ ( ( x ∈ B ) ∧ ( x ∈ C ) ⇒ ( x ∈ A ) ∨ ( x ∈ B ∩ C ) ⇒ x ∈ A ∪ ( B ∩ C ) \Rightarrow (x\in A)\vee((x\in B)\wedge(x\in C) \Rightarrow (x\in A)\vee(x\in B\cap C)\Rightarrow x\in A\cup (B\cap C) (xA)((xB)(xC)(xA)(xBC)xA(BC)

( A ∪ B ) ∩ ( A ∪ C ) ⊂ A ∪ ( B ∩ C ) (A\cup B)\cap(A\cup C)\subset A\cup (B\cap C) (AB)(AC)A(BC)

【3】证明并与交的对偶性

a) C M ( A ∪ B ) = C M A ∩ C M B C_M(A\cup B)=C_MA\cap C_MB CM(AB)=CMACMB

x ∈ C M ( A ∪ B ) ⇒ x ∉ A ∪ B ⇒ ( x ∉ A ) ∧ ( x ∉ B ) x\in C_M(A\cup B)\Rightarrow x\notin A\cup B\Rightarrow (x\notin A)\wedge(x\notin B) xCM(AB)x/AB(x/A)(x/B)

⇒ ( x ∈ C M A ) ∧ ( x ∈ C M B ) ⇒ x ∈ C M A ∩ C M B \Rightarrow (x\in C_MA)\wedge(x\in C_MB)\Rightarrow x\in C_MA\cap C_MB (xCMA)(xCMB)xCMACMB

C M ( A ∪ B ) ⊂ C M A ∩ C M B C_M(A\cup B)\subset C_MA\cap C_MB CM(AB)CMACMB

x ∈ C M A ∩ C M B ⇒ ( x ∈ C M A ) ∧ ( x ∈ C M B ) x \in C_MA\cap C_MB \Rightarrow (x\in C_MA)\wedge(x\in C_MB) xCMACMB(xCMA)(xCMB)

⇒ ( x ∉ A ) ∧ ( x ∉ B ) ⇒ x ∉ A ∪ B ⇒ x ∈ C M ( A ∪ B ) \Rightarrow (x\notin A)\wedge(x\notin B) \Rightarrow x\notin A\cup B \Rightarrow x\in C_M(A\cup B) (x/A)(x/B)x/ABxCM(AB)

C M A ∩ C M B ⊂ C M ( A ∪ B ) C_MA\cap C_MB\subset C_M(A\cup B) CMACMBCM(AB)


b) C M ( A ∩ B ) = C M A ∪ C M B C_M(A\cap B)=C_MA\cup C_MB CM(AB)=CMACMB

x ∈ C M ( A ∩ B ) ⇒ x ∉ A ∩ B ⇒ ( x ∉ A ) ∨ ( x ∉ B ) x\in C_M(A\cap B) \Rightarrow x\notin A\cap B\Rightarrow (x\notin A)\vee(x\notin B) xCM(AB)x/AB(x/A)(x/B)

⇒ ( x ∈ C M A ) ∨ ( x ∈ C M B ) ⇒ x ∈ C M A ∪ C M B \Rightarrow (x\in C_MA)\vee(x\in C_MB)\Rightarrow x\in C_MA\cup C_MB (xCMA)(xCMB)xCMACMB

C M ( A ∩ B ) ⊂ C M A ∪ C M B C_M(A\cap B)\subset C_MA\cup C_MB CM(AB)CMACMB

x ∈ C M A ∪ C M B ⇒ ( x ∈ C M A ) ∨ ( x ∈ C M B ) x\in C_MA\cup C_MB \Rightarrow (x\in C_MA)\vee(x\in C_MB) xCMACMB(xCMA)(xCMB)

⇒ ( x ∉ A ) ∨ ( x ∉ B ) ⇒ x ∉ A ∩ B ⇒ x ∈ C M ( A ∩ B ) \Rightarrow (x\notin A)\vee(x\notin B) \Rightarrow x\notin A\cap B \Rightarrow x\in C_M(A\cap B) (x/A)(x/B)x/ABxCM(AB)

C M A ∪ C M B ⊂ C M ( A ∩ B ) C_MA\cup C_MB\subset C_M(A\cap B) CMACMBCM(AB)

【4】笛卡尔积的几何解释

给出以下集合的笛卡尔积的几何解释

笛卡尔积 A × B A\times B A×B 可以看作是 ( A , 0 ) + ( 0 , B ) (A,0)+(0,B) (A,0)+(0,B) , 这两个空间在高纬度下是垂直的,这可能也是笛卡尔积别称直积的原因。

在这种意义下,来解释下面的问题

a) 两线段

线段的元素是起点到终点中间的数。将两条线段在平面内置于垂直状态, ( x , 0 ) + ( 0 , y ) = ( x , y ) (x,0)+(0,y)=(x,y) (x,0)+(0,y)=(x,y) 组成平面上的一个矩形区域。

b)两直线

直线的元素是全体实数。 ( x , y ) (x,y) (x,y) 的第一坐标,第二坐标都没有限制。该笛卡尔积为整个平面。

c) 直线和圆周

圆周的元素是圆周上的有序偶 ( x , y ) (x,y) (x,y) . 这些有序偶与直线上的数 z z z 组合,也·即把圆周的圆心置于直线上,圆周垂直于直线,整体沿直线平移,这形成了满足圆柱面方程的笛卡尔积 { ( x , y , z ) } \{(x,y,z)\} {(x,y,z)}

d) 直线与圆面

圆面的元素是圆面上的有序偶 ( x , y ) (x,y) (x,y) .这等同于把 c) 内部的点也囊括进来。是一个无限长的圆柱体。

e) 两个圆周

将第一个圆周平铺在平面上,将第二个圆周的圆点置于第一个圆周上,且所在平面始终垂直于第一平面。也即将第二个圆周沿着第一个圆周移动,这形成了一个圆环面。

在这里插入图片描述

f) 圆周与圆面

这等同于将 e) 内部的点也囊括进来。形成了一个圆环体。

【5】笛卡尔积平方的对角线

集合 Δ = { ( x 1 , x 2 ) ∈ X 2 ∣ x 1 = x 2 } \Delta=\{(x_1,x_2)\in X^2|x_1=x_2\} Δ={(x1,x2)X2x1=x2} 称为集合 X X X 的笛卡尔积平方的对角线。请给出【4】中a),b),e)所得集合的对角线的几何解释.

a) 正方形的对角线 { ( x , x ) ∣ x ∈ L } \{(x,x)|x\in L\} {(x,x)xL}

b) 平面的对角线 { ( x , x ) ∣ x ∈ R } \{(x,x)|x\in R\} {(x,x)xR}

c) 圆环面的对角线

在这里插入图片描述

查询资料得,圆环面的参数方程为:

{ x ( u , v ) = ( R + r cos ⁡ v ) cos ⁡ u y ( u , v ) = ( R + r cos ⁡ v ) sin ⁡ u z ( u , v ) = r sin ⁡ v \begin{cases}x(u,v) = (R+r\cos v)\cos u \\ y(u,v) = (R+r\cos v)\sin u \\ z (u,v)=r\sin v\end{cases} x(u,v)=(R+rcosv)cosuy(u,v)=(R+rcosv)sinuz(u,v)=rsinv

则标准圆环面的对角线的参数方程为

{ x ( u ) = cos ⁡ u + cos ⁡ 2 u y ( u ) = sin ⁡ u + sin ⁡ u cos ⁡ u z ( u ) = sin ⁡ u \begin{cases}x(u) = \cos u+\cos^2 u \\ y(u) = \sin u+\sin u\cos u \\ z (u)=\sin u\end{cases} x(u)=cosu+cos2uy(u)=sinu+sinucosuz(u)=sinu

【6】笛卡尔积的性质

a) ( X × Y = ∅ ) ⇔ ( X = ∅ ) ∨ ( Y = ∅ ) (X\times Y=\varnothing)\Leftrightarrow (X=\varnothing)\vee(Y=\varnothing) (X×Y=)(X=)(Y=)

证明:

假设 ( X = ∅ ) ∨ ( Y = ∅ ) (X=\varnothing)\vee(Y=\varnothing) (X=)(Y=) 不成立. 即 ( X ≠ ∅ ) ∧ ( Y ≠ ∅ ) (X\neq \varnothing)\wedge(Y\ne \varnothing) (X=)(Y=) 成立. 则

∃ x , y ( ( x ∈ X ) ∧ ( y ∈ Y ) ) ⇒ ∃ x , y ( ( x , y ) ∈ ( X × Y ) ) ⇒ X × Y ≠ ∅ \exist x,y((x\in X)\wedge(y\in Y))\Rightarrow \exists x,y((x,y)\in (X\times Y)) \Rightarrow X\times Y \neq \varnothing x,y((xX)(yY))x,y((x,y)(X×Y))X×Y= .

( X × Y = ∅ ) ⇒ ( X = ∅ ) ∨ ( Y = ∅ ) (X\times Y=\varnothing)\Rightarrow (X=\varnothing)\vee(Y=\varnothing) (X×Y=)(X=)(Y=)

假设 X × Y = ∅ X\times Y=\varnothing X×Y= 不成立. 即 X × Y ≠ ∅ X\times Y\neq \varnothing X×Y= 成立. 则

∃ x , y ( ( x , y ) ∈ ( X × Y ) ) ⇒ ∃ x , y ( ( x ∈ X ) ∧ ( y ∈ Y ) ) ⇒ ( X ≠ ∅ ) ∧ ( Y ≠ ∅ ) \exist x,y((x,y)\in (X\times Y))\Rightarrow \exist x,y((x\in X)\wedge(y\in Y)) \Rightarrow (X\neq \varnothing)\wedge(Y\ne \varnothing) x,y((x,y)(X×Y))x,y((xX)(yY))(X=)(Y=)

( X = ∅ ) ∨ ( Y = ∅ ) ⇒ ( X × Y = ∅ ) (X=\varnothing)\vee(Y=\varnothing) \Rightarrow (X\times Y=\varnothing) (X=)(Y=)(X×Y=)


以下以 A × B ≠ ∅ A\times B\neq \varnothing A×B= X × Y ≠ ∅ X\times Y\neq \varnothing X×Y= 为前提


b) ( A × B ⊂ X × Y ) ⇔ ( A ⊂ X ) ∧ ( B ⊂ Y ) (A\times B\subset X\times Y)\Leftrightarrow (A\subset X)\wedge(B\subset Y) (A×BX×Y)(AX)(BY)

证明:

假设 ( A × B ⊂ X × Y ) (A\times B\subset X\times Y) (A×BX×Y) 成立.

x ∈ A , y ∈ B ⇒ ( x , y ) ∈ A × B ⇒ ( x , y ) ∈ X × Y x\in A,y\in B\Rightarrow (x,y)\in A\times B\Rightarrow(x,y)\in X\times Y xA,yB(x,y)A×B(x,y)X×Y

⇒ ( x ∈ X ) ∧ ( y ∈ Y ) \Rightarrow (x\in X)\wedge (y\in Y) (xX)(yY) . 故 ( A × B ⊂ X × Y ) ⇒ ( A ⊂ X ) ∧ ( B ⊂ Y ) (A\times B\subset X\times Y)\Rightarrow (A\subset X)\wedge(B\subset Y) (A×BX×Y)(AX)(BY)

假设 ( A ⊂ X ) ∧ ( B ⊂ Y ) (A\subset X)\wedge(B\subset Y) (AX)(BY) 成立.

( x , y ) ∈ A × B ⇒ ( x ∈ A ) ∧ ( y ∈ B ) ⇒ ( x ∈ X ) ∧ ( y ∈ Y ) (x,y)\in A\times B\Rightarrow (x\in A)\wedge (y\in B)\Rightarrow (x\in X)\wedge (y\in Y) (x,y)A×B(xA)(yB)(xX)(yY)

⇒ ( x , y ) ∈ X × Y \Rightarrow (x,y)\in X\times Y (x,y)X×Y . 故 ( A ⊂ X ) ∧ ( B ⊂ Y ) ⇒ ( A × B ⊂ X × Y ) (A\subset X)\wedge(B\subset Y)\Rightarrow (A\times B\subset X\times Y) (AX)(BY)(A×BX×Y).


c) ( X × Y ) ∪ ( Z × Y ) = ( X ∪ Z ) × Y (X\times Y)\cup (Z\times Y)=(X\cup Z)\times Y (X×Y)(Z×Y)=(XZ)×Y

证明:

( a , b ) ∈ ( X × Y ) ∪ ( Z × Y ) ⇔ ( ( a , b ) ∈ ( X × Y ) ) ∨ ( ( a , b ) ∈ ( Z × Y ) ) (a,b)\in(X\times Y)\cup (Z\times Y)\Leftrightarrow ((a,b)\in (X\times Y))\vee ((a,b)\in (Z\times Y)) (a,b)(X×Y)(Z×Y)((a,b)(X×Y))((a,b)(Z×Y))

⇔ ( ( a ∈ X ) ∨ ( a ∈ Z ) ) ∧ ( b ∈ Y ) ⇔ ( a ∈ X ∪ Z ) ∧ ( b ∈ Y ) \Leftrightarrow ((a\in X)\vee(a\in Z))\wedge(b\in Y)\Leftrightarrow (a\in X\cup Z)\wedge(b\in Y) ((aX)(aZ))(bY)(aXZ)(bY)

⇔ ( a , b ) ∈ ( X ∪ Z ) × Y \Leftrightarrow (a,b)\in (X\cup Z)\times Y (a,b)(XZ)×Y


d) ( X × Y ) ∩ ( X ′ × Y ′ ) = ( X ∩ X ′ ) × ( Y ∩ Y ′ ) (X\times Y)\cap (X'\times Y')=(X\cap X')\times (Y\cap Y') (X×Y)(X×Y)=(XX)×(YY)

证明:

( x , y ) ∈ ( X × Y ) ∩ ( X ′ × Y ′ ) ⇔ ( ( x , y ) ∈ X × Y ) ∧ ( ( x , y ) ∈ X ′ × Y ′ ) ) (x,y)\in (X\times Y)\cap (X'\times Y') \Leftrightarrow ((x,y)\in X\times Y)\wedge((x,y)\in X'\times Y')) (x,y)(X×Y)(X×Y)((x,y)X×Y)((x,y)X×Y))

⇔ ( ( x ∈ X ) ∧ ( x ∈ X ′ ) ) ∧ ( ( y ∈ Y ) ∧ ( y ∈ Y ′ ) ) \Leftrightarrow ((x\in X)\wedge(x\in X'))\wedge((y\in Y)\wedge(y\in Y')) ((xX)(xX))((yY)(yY))

⇔ ( x ∈ ( X ∩ X ′ ) ) ∧ ( y ∈ ( Y ∩ Y ′ ) ) \Leftrightarrow (x\in(X\cap X'))\wedge (y\in(Y\cap Y')) (x(XX))(y(YY))

⇔ ( x , y ) ∈ ( X ∩ X ′ ) × ( Y ∩ Y ′ ) \Leftrightarrow (x,y)\in (X\cap X')\times (Y\cap Y') (x,y)(XX)×(YY)

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值