KG-RAG 项目安装和配置指南

KG-RAG 项目安装和配置指南

KG_RAG KG_RAG 项目地址: https://gitcode.com/gh_mirrors/kg/KG_RAG

1. 项目基础介绍和主要编程语言

项目基础介绍

KG-RAG(Knowledge Graph-based Retrieval Augmented Generation)是一个任务无关的框架,旨在结合知识图谱(Knowledge Graph, KG)的显式知识和大型语言模型(Large Language Model, LLM)的隐式知识,用于知识密集型任务。该项目主要应用于生物医学领域,利用大规模的生物医学知识图谱SPOKE(包含超过2700万个节点和5300万条边)来增强LLM的性能。

主要编程语言

该项目主要使用Python编程语言进行开发。

2. 项目使用的关键技术和框架

关键技术

  • 知识图谱(Knowledge Graph, KG):用于提供领域特定的显式知识。
  • 大型语言模型(Large Language Model, LLM):如GPT-4和GPT-3.5-turbo,用于处理自然语言生成任务。
  • Retrieval-Augmented Generation (RAG):结合知识图谱和LLM,生成更准确和上下文相关的响应。

框架

  • KG-RAG框架:通过从知识图谱中提取“提示感知上下文”,优化LLM的响应。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

  1. 操作系统:建议使用Linux或macOS系统。
  2. Python版本:建议使用Python 3.10.9。
  3. Git:用于克隆项目仓库。
  4. Conda:用于创建和管理虚拟环境。

详细安装步骤

步骤1:克隆项目仓库

首先,使用Git克隆项目仓库到本地:

git clone https://github.com/BaranziniLab/KG_RAG.git
cd KG_RAG
步骤2:创建虚拟环境

使用Conda创建一个新的虚拟环境,并激活它:

conda create -n kg_rag python=3.10.9
conda activate kg_rag
步骤3:安装依赖项

在激活的虚拟环境中,安装项目所需的依赖项:

pip install -r requirements.txt
步骤4:更新配置文件

编辑config.yaml文件,确保所有必要的配置信息都已正确填写。这个文件包含了运行脚本所需的所有信息。

步骤5:运行设置脚本

运行设置脚本以完成初始化:

python -m kg_rag.run_setup
步骤6:运行KG-RAG

最后,从终端运行KG-RAG。你可以选择使用GPT或Llama模型:

使用GPT

# 使用Azure API
GPT_API_TYPE='azure' python -m kg_rag.rag_based_generation.GPT.text_generation -g gpt-4

# 使用OpenAI API
GPT_API_TYPE='openai' python -m kg_rag.rag_based_generation.GPT.text_generation -g gpt-3.5-turbo

使用Llama

python -m kg_rag.rag_based_generation.Llama.text_generation -m method-1

注意事项

  • 确保在运行KG-RAG之前,你已经正确配置了API密钥和相关设置。
  • 如果你选择使用Llama模型,首次运行时可能需要下载模型,这可能需要一些时间。

通过以上步骤,你应该能够成功安装和配置KG-RAG项目,并开始使用它进行知识密集型任务的处理。

KG_RAG KG_RAG 项目地址: https://gitcode.com/gh_mirrors/kg/KG_RAG

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魏或伶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值