KG-RAG 项目安装和配置指南
KG_RAG 项目地址: https://gitcode.com/gh_mirrors/kg/KG_RAG
1. 项目基础介绍和主要编程语言
项目基础介绍
KG-RAG(Knowledge Graph-based Retrieval Augmented Generation)是一个任务无关的框架,旨在结合知识图谱(Knowledge Graph, KG)的显式知识和大型语言模型(Large Language Model, LLM)的隐式知识,用于知识密集型任务。该项目主要应用于生物医学领域,利用大规模的生物医学知识图谱SPOKE(包含超过2700万个节点和5300万条边)来增强LLM的性能。
主要编程语言
该项目主要使用Python编程语言进行开发。
2. 项目使用的关键技术和框架
关键技术
- 知识图谱(Knowledge Graph, KG):用于提供领域特定的显式知识。
- 大型语言模型(Large Language Model, LLM):如GPT-4和GPT-3.5-turbo,用于处理自然语言生成任务。
- Retrieval-Augmented Generation (RAG):结合知识图谱和LLM,生成更准确和上下文相关的响应。
框架
- KG-RAG框架:通过从知识图谱中提取“提示感知上下文”,优化LLM的响应。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
- 操作系统:建议使用Linux或macOS系统。
- Python版本:建议使用Python 3.10.9。
- Git:用于克隆项目仓库。
- Conda:用于创建和管理虚拟环境。
详细安装步骤
步骤1:克隆项目仓库
首先,使用Git克隆项目仓库到本地:
git clone https://github.com/BaranziniLab/KG_RAG.git
cd KG_RAG
步骤2:创建虚拟环境
使用Conda创建一个新的虚拟环境,并激活它:
conda create -n kg_rag python=3.10.9
conda activate kg_rag
步骤3:安装依赖项
在激活的虚拟环境中,安装项目所需的依赖项:
pip install -r requirements.txt
步骤4:更新配置文件
编辑config.yaml
文件,确保所有必要的配置信息都已正确填写。这个文件包含了运行脚本所需的所有信息。
步骤5:运行设置脚本
运行设置脚本以完成初始化:
python -m kg_rag.run_setup
步骤6:运行KG-RAG
最后,从终端运行KG-RAG。你可以选择使用GPT或Llama模型:
使用GPT:
# 使用Azure API
GPT_API_TYPE='azure' python -m kg_rag.rag_based_generation.GPT.text_generation -g gpt-4
# 使用OpenAI API
GPT_API_TYPE='openai' python -m kg_rag.rag_based_generation.GPT.text_generation -g gpt-3.5-turbo
使用Llama:
python -m kg_rag.rag_based_generation.Llama.text_generation -m method-1
注意事项
- 确保在运行KG-RAG之前,你已经正确配置了API密钥和相关设置。
- 如果你选择使用Llama模型,首次运行时可能需要下载模型,这可能需要一些时间。
通过以上步骤,你应该能够成功安装和配置KG-RAG项目,并开始使用它进行知识密集型任务的处理。