煤矿井下钻场目标检测数据集(夹持器、钻机卡盘、煤矿工人、矿井安全帽和钻杆等五类目标,70948张,PASCAL VOC,8.8GB)
gripper
: 夹持器drill_chuck
: 钻机卡盘miner
: 煤矿工人safety_hat
: 矿井安全帽drill_rod
: 钻杆
研究意义:
煤矿井下钻场打钻是解决瓦斯灾害、水害、隐蔽地质灾害的重要措施,可以显著提升我国煤矿井下灾害防治水平。为了实时监测打钻过程并提高打钻效率,需要进行煤矿井下钻场目标检测。煤矿井下钻场目标检测是对打钻现场所涉及的重要目标进行识别和定位。相对于传统的煤矿井下钻场目标检测方法,基于深度学习的煤矿井下钻场目标检测方法可以提升目标检测的精度、时效性和稳定性,但需依赖高质量的数据集。目前,煤矿井下钻场目标检测研究主要依赖于小规模的私有数据集,难以为深度神经网络模型训练提供充足而可靠的数据。本研究通过采用煤矿用本安型执法记录仪对煤矿井下打钻现场进行拍摄,并经过数据清洗、数据标注、专家抽检核查等步骤,构建了标准化的煤矿井下钻场目标检测数据集。
本数据集包含了来自不同钻场和环境背景条件下的70948张图片,涵盖了夹持器、钻机卡盘、煤矿工人、矿井安全帽和钻杆等五类目标,并提供了PASCAL VOC格式的标注文件。本数据集可为煤矿井下钻场目标检测研究提供强有力的数据支撑,对推动智能化煤矿井下监测预警具有重要作用。xml标签
YOLOv8 煤矿井下钻场目标检测
import os
import glob
import xml.etree.ElementTree as ET
import shutil
import yaml
from pathlib import Path
import numpy as np
import torch
from IPython.display import Image, clear_output
from ultralytics import YOLO
# 设置随机种子以保证可重复性
torch.manual_seed(42)
# 定义数据集路径
dataset_dir = 'path/to/dataset'
images_dir = os.path.join(dataset_dir, 'images')
annotations_dir = os.path.join(dataset_dir, 'annotations')
# 创建YOLOv5的数据集配置文件
data_config = {
'train': os.path.join(dataset_dir, 'train/images'),
'val': os.path.join(dataset_dir, 'val/images'),
'test': os.path.join(dataset_dir, 'test/images'),
'nc': 5, # 类别数量
'names': ['gripper', 'drill_chuck', 'miner', 'safety_hat', 'drill_rod'] # 类别名称
}
with open(os.path.join(dataset_dir, 'data.yaml'), 'w') as f:
yaml.dump(data_config, f)
# 划分训练集、验证集和测试集
def split_dataset(images_dir, annotations_dir):
image_files = [os.path.basename(f) for f in glob.glob(os.path.join(images_dir, '*.jpg'))]
np.random.shuffle(image_files)
train_files = image_files[:int(len(image_files) * 0.8)]
val_files = image_files[int(len(image_files) * 0.8):int(len(image_files) * 0.9)]
test_files = image_files[int(len(image_files) * 0.9):]
def create_folder_and_write_files(folder_name, files):
folder_path = os.path.join(dataset_dir, folder_name)
images_folder = os.path.join(folder_path, 'images')
labels_folder = os.path.join(folder_path, 'labels')
if not os.path.exists(images_folder):
os.makedirs(images_folder)
if not os.path.exists(labels_folder):
os.makedirs(labels_folder)
with open(os.path.join(folder_path, 'images.txt'), 'w') as f:
for img in files:
src_img_path = os.path.join(images_dir, img)
dst_img_path = os.path.join(images_folder, img)
shutil.copy(src_img_path, dst_img_path)
f.write(dst_img_path + '\n')
src_label_path = os.path.join(annotations_dir, os.path.splitext(img)[0] + '.xml')
dst_label_path = os.path.join(labels_folder, os.path.splitext(img)[0] + '.txt')
shutil.copy(src_label_path, dst_label_path)
f.write(dst_label_path + '\n')
create_folder_and_write_files('train', train_files)
create_folder_and_write_files('val', val_files)
create_folder_and_write_files('test', test_files)
split_dataset(images_dir, annotations_dir)
# 转换VOC格式到YOLO格式
def convert_voc_to_yolo(voc_annotations_dir, yolo_labels_dir, class_mapping):
if not os.path.exists(yolo_labels_dir):
os.makedirs(yolo_labels_dir)
for annotation_file in glob.glob(os.path.join(voc_annotations_dir, '*.xml')):
tree = ET.parse(annotation_file)
root = tree.getroot()
image_filename = root.find('filename').text
image_width = int(root.find('size/width').text)
image_height = int(root.find('size/height').text)
yolo_annotation_path = os.path.join(yolo_labels_dir, os.path.splitext(image_filename)[0] + '.txt')
with open(yolo_annotation_path, 'w') as yolo_file:
for obj in root.findall('object'):
label = obj.find('name').text
if label not in class_mapping:
continue
class_id = class_mapping[label]
bndbox = obj.find('bndbox')
xmin = float(bndbox.find('xmin').text)
ymin = float(bndbox.find('ymin').text)
xmax = float(bndbox.find('xmax').text)
ymax = float(bndbox.find('ymax').text)
x_center = (xmin + xmax) / 2.0 / image_width
y_center = (ymin + ymax) / 2.0 / image_height
width = (xmax - xmin) / image_width
height = (ymax - ymin) / image_height
yolo_file.write(f"{class_id} {x_center} {y_center} {width} {height}\n")
class_mapping = {
'gripper': 0,
'drill_chuck': 1,
'miner': 2,
'safety_hat': 3,
'drill_rod': 4
}
for folder in ['train', 'val', 'test']:
voc_labels_dir = os.path.join(dataset_dir, folder, 'labels')
yolo_labels_dir = os.path.join(dataset_dir, folder, 'labels')
convert_voc_to_yolo(voc_labels_dir, yolo_labels_dir, class_mapping)
# 训练模型
model = YOLO('yolov8n.pt') # 加载预训练的YOLOv8n模型
results = model.train(
data=os.path.join(dataset_dir, 'data.yaml'),
epochs=100,
imgsz=640,
batch=16,
name='coal_mine_drilling_detection',
project='runs/train'
)
# 评估模型
metrics = model.val()
# 可视化预测结果
source_image = '../path/to/dataset/test/sample.jpg' # 替换为你要测试的图片路径
results = model.predict(source=source_image, conf=0.25, iou=0.45, save=True, save_txt=True)
# 显示预测结果
Image(filename='runs/detect/predict/sample.jpg')
加入你有一个煤矿井下钻场目标检测数据集,包含70,948张图像,总数据量为8.8GB,并且提供了PASCAL VOC格式的标注文件。数据集涵盖了五类目标:夹持器、钻机卡盘、煤矿工人、矿井安全帽和钻杆。你需要使用这些数据进行目标检测任务,并使用YOLOv8进行训练、评估和可视化预测结果。
### 项目介绍
#### 数据准备
- **数据集**: 包含70,948张图像,总数据量为8.8GB。
- **标注格式**: PASCAL VOC格式。
- **类别**:
- `gripper`: 夹持器
- `drill_chuck`: 钻机卡盘
- `miner`: 煤矿工人
- `safety_hat`: 矿井安全帽
- `drill_rod`: 钻杆
#### 模型选择
- **YOLOv8**: 使用YOLOv8进行目标检测。YOLOv8是YOLO系列的最新版本,具有更高的性能和更好的精度。
#### 功能
- **数据加载**: 自动从指定目录加载图像和标注文件。
- **数据转换**: 将PASCAL VOC格式的标注文件转换为YOLO格式。
- **模型训练**: 使用YOLOv8进行训练。
- **模型评估**: 在验证集上评估模型性能。
- **结果保存**: 保存训练日志和最佳模型权重。
- **可视化预测结果**: 可视化预测结果以进行验证。
### 代码实现
首先,确保你已经安装了YOLOv8库和其他必要的依赖项。你可以通过以下命令安装YOLOv8:
```bash
pip install ultralytics
接下来,我们编写代码来组织数据集并训练YOLOv8模型。我们将先进行数据格式的转换,然后进行模型训练。
如何使用这些代码
-
准备数据:
- 确保你的数据集格式正确,包含图像文件夹和对应的标注文件夹。
- 示例数据结构如下:
path/to/dataset/ ├── images/ │ ├── image1.jpg │ ├── image2.jpg │ └── ... ├── annotations/ │ ├── image1.xml │ ├── image2.xml │ └── ...
-
替换数据路径:
- 在代码中,将
'path/to/dataset'
替换为你的数据集路径。
dataset_dir = 'your_dataset_directory'
- 在代码中,将
-
运行代码:
- 将上述代码复制到你的Python脚本中,并运行该脚本。
- 确保你已经安装了所需的库:
pip install ultralytics
示例:使用自定义数据集
假设你有一个新的数据集 my_coal_mine_drilling_dataset
,其内容如下:
my_coal_mine_drilling_dataset/
├── images/
│ ├── image1.jpg
│ ├── image2.jpg
│ └── ...
├── annotations/
│ ├── image1.xml
│ ├── image2.xml
│ └── ...
你可以按照以下步骤进行替换:
-
修改数据路径:
dataset_dir = 'my_coal_mine_drilling_dataset'
-
运行完整的代码:
- 将所有代码整合到一个Python脚本中,并运行该脚本。
注释说明
代码中包含了详细的注释,帮助你理解每个部分的功能。以下是关键部分的注释:
-
数据准备:
data_config
: 定义训练集、验证集和测试集的路径,以及类别信息。
-
数据划分:
split_dataset
: 根据给定的比例划分训练集、验证集和测试集。
-
数据转换:
convert_voc_to_yolo
: 将PASCAL VOC格式的标注文件转换为YOLO格式。
-
模型训练:
model.train
: 使用YOLOv8进行训练。
-
模型评估:
model.val
: 在验证集上评估模型性能。
-
可视化预测结果:
model.predict
: 进行推理并显示预测结果。
结果
运行代码后,你将得到以下结果:
-
控制台输出:
- 训练过程中每个epoch的日志信息。
- 验证集上的评价指标(如mAP)。
-
文件输出:
runs/train/coal_mine_drilling_detection/weights/best.pt
: 最佳模型权重。runs/val/exp/results.txt
: 验证结果。
-
图像输出:
runs/detect/predict/sample.jpg
: 带有预测边界的图像。
希望这些详细的信息和代码能够帮助你顺利实施和优化你的项目。如果你有任何进一步的问题或需要更多帮助,请随时提问!
运行步骤总结
-
安装YOLOv8:
pip install ultralytics
-
准备数据集:
- 确保数据集路径正确,并且包含训练集、验证集和测试集文件夹,以及对应的标注文件。
-
运行训练脚本:
python your_script_name.py
-
评估模型:
- 评估结果会在训练结束后自动输出在控制台和文件中。
-
可视化预测结果:
- 测试图像的结果会保存在
runs/detect/predict/
文件夹中,可以直接查看带有预测边界的图像。
- 测试图像的结果会保存在
希望这些详细的指导和代码示例能帮助你成功实现和优化你的煤矿井下钻场目标检测